Skip to main content
Log in

Sulfidation of iron at high temperatures and diffusion kinetics in ferrous sulfide

  • Published:
Oxidation of Metals Aims and scope Submit manuscript

Abstract

The kinetics and mechanism of iron sulfidation have been studied as a function of temperature (950–1200 K) and sulfur pressure (10−3-0.065 atm). It has been stated that a compact Fe1−yS scale on iron grows according to the parabolic rate law as a result of outward lattice diffusion of metal ions through cation vacancies. The activation energy of sulfidation increases with sulfur pressure and the 1/n exponent increases with temperature. This nontypical dependence of iron sulfidation kinetics on temperature and pressure results from the analogous effect of both these parameters on defect concentration in ferrous sulfide. The chemical diffusion coefficients,DFeS, and diffusion coefficients of defects, Dd, in ferrous sulfide have been calculated on the basis of parabolic rate contacts of iron sulfidation and deviations from stoichiometry in ferrous sulfide. It has been shown thatDFeS is practically independent of cation vacancy concentration whereas the diffusion coefficient of defects depends strongly on that parameter. A comparison of self-diffusion coefficients of iron in Fe1−yS calculated from the kinetics of iron sulfidation to those obtained from radioisotopic studies indicates that within the range studied of temperatures and sulfur vapor pressures the outward diffusion of iron across the scale occurs preferentially along the c axis of columnar ferrous sulfide crystals.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. K. Hauffe and A. Rahmel,Z. Physik Chem. 199, 152 (1952).

    Google Scholar 

  2. A. Meussner and C. A. Birchenall,Corrosion 13, 677 (1957).

    Google Scholar 

  3. P. W. Geld and A. K. Krasowska,Zh. Fiz. Khim. 34, 1585 (1960).

    Google Scholar 

  4. S. Mrowec and T. Werber,Chemia Anal. 7, 605 (1962).

    Google Scholar 

  5. A. Brückman and J. Romański,Corros. Sci. 5, 185 (1965).

    Google Scholar 

  6. S. Mrowec,Bull. Acad. Pol. Sci. Ser. Sci. Chim. 15, 517 (1967).

    Google Scholar 

  7. J. Romański,Corros. Sci. 8, 67 (1968).

    Google Scholar 

  8. E. T. Turkdogan,Trans. AIME 242, 1665 (1968).

    Google Scholar 

  9. K. N. Strafford and R. Manifeld,Corros. Sci. 9, 489 (1969).

    Google Scholar 

  10. T. Narita and K. Nishida,Trans. JIM,14, 439 (1973).

    Google Scholar 

  11. T. Narita and K. Nishida,Proceedings of the Fifth International Congress on Metallic Corrosion (National Association Corrosion Engineers, Houston 1974), p. 719.

    Google Scholar 

  12. Z. A. Foroulis, in “Properties of High Temperature Alloys”, Z. A. Foroulis, ed. (The Electrochemical Society, Princeton, 1975), p. 77.

    Google Scholar 

  13. D. J. Young and W. W. Smeltzer,J. Electrochem Soc. 123, 229 (1976).

    Google Scholar 

  14. S. Mrowec, A. Stołosa, and M. Danielewski,Oxid. Met. 11, 355 (1977).

    Google Scholar 

  15. M. Danielewski, S. Mrowec, A. Stołosa, and J. Przybyszewska,Bull. Acad. Pol. Sci. Ser. Sci. Chim. 26, 175 (1978).

    Google Scholar 

  16. E. M. Fryt, V. S. Bhide, W. W. Smeltzer, and J. S. Kirkaldy,J. Electrochem. Soc.,126, 683 (1979).

    Google Scholar 

  17. S. Mrowec and A. Stołosa,Oxid. Met. 8, 379 (1974).

    Google Scholar 

  18. E. M. Fryt, W. W. Smeltzer, and J. S. Kirkaldy,J. Electrochem. Soc. 126, 673 (1979).

    Google Scholar 

  19. M. Danielewski and A. Stołosa,Bull. Acad. Pol. Sci. Ser. Sci. Chim. 11, 861 (1979).

    Google Scholar 

  20. A. Sterten,Corros. Sci. 14, 377 (1974).

    Google Scholar 

  21. T. Narita and K. Nishida,Trans. JIM 14, 447 (1973).

    Google Scholar 

  22. M. Danielewski, S. Mrowec, and A. Stołosa,Solid State Ionics,1, 287 (1980).

    Google Scholar 

  23. R. H. Condit, R. R. Hobbins, and C. E. Birchenall,Oxid. Met. 8, 409 (1974).

    Google Scholar 

  24. T. Rosenqvist,J. Iron Steel Inst. 176, 37 (1954).

    Google Scholar 

  25. P. Toulmin and P. B. Barton,Geochim. Cosmochim. Acta 28, 641 (1964).

    Google Scholar 

  26. M. Nagamori and M. Kamedy,Trans. JIM,9, 187 (1968).

    Google Scholar 

  27. W. Burgmann Jr., G. Urbain, and M. G. Frohlerg,Mem. Sci. Rev. Metall. 65, 567 (1968).

    Google Scholar 

  28. H. Rau,J. Phys. Chem. Solids,37, 425 (1976).

    Google Scholar 

  29. R. Y. Lin, H. Ipser, and Y. A. Chang,Metal Trans. 8B, 347 (1977).

    Google Scholar 

  30. H. Kaplan and W. Worrell, inChemistry of Extended Defects in Non-Metallic Solids L. Eyring and M. O'Keefee, eds. (North-Holland, Amsterdam, 1970), p. 561.

    Google Scholar 

  31. H. G. Townsed, I. R. Gosellin, R. J. Tremblay, and A. H. Webster,J. Phys. Paris 37, 4–11 (1976).

    Google Scholar 

  32. J. Molenda, S. Mrowec, and A. Stołosa,Solid State Ionic,1, 273 (1980).

    Google Scholar 

  33. G. G. Libowitz, inReactivity of Solids, J. B. Anderson, M. W. Roberts, and F. S. Stone, eds. (Chapman and Hall, London, 1972), p. 107).

    Google Scholar 

  34. C. Wagner,Atom Movements (ASM, Cleveland, 1951), p. 153.

    Google Scholar 

  35. F. Booth,Trans. Faraday Soc. 44, 736 (1948).

    Google Scholar 

  36. A. T. Fromhold Jr.,Theory of Metal Oxidation (North-Holland, Amsterdam, 1976) p. 69.

    Google Scholar 

  37. H. Haraldsen,Z. Anorg. Chem. 246, 169 (1941).

    Google Scholar 

  38. F. Gronwald and H. Haraldsen,Acta Chem. Scand. 6, 1452 (1952).

    Google Scholar 

  39. R. Perthel,Ann. Physik 5, 273 (1960).

    Google Scholar 

  40. W. L. Worrell and E. T. Turkdogan,Metal. Trans. 1, 299 (1970).

    Google Scholar 

  41. P. Kofstad,Nonstoichiometry, Diffusion and Electrical Conductivity in Binary Metal Oxides (Wiley, New York, 1972).

    Google Scholar 

  42. J. C. Ward,Solid State Commun. 9, 357 (1971).

    Google Scholar 

  43. T. Narita and K. Nishida,Trans. JIM. 15, 314 (1974).

    Google Scholar 

  44. S. Mrowec,Defects and Diffusion in Solids, (PWN-Elsevier, Warszawa, Amsterdam 1980), p. 241.

    Google Scholar 

  45. N. F. Mott and R. Gurney,Electronic Processes in Ionic Crystals, (Oxford University Press, Oxford, 1953), p. 34.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Danielewski, M., Mrowec, S. & Stołosa, A. Sulfidation of iron at high temperatures and diffusion kinetics in ferrous sulfide. Oxid Met 17, 77–97 (1982). https://doi.org/10.1007/BF00606194

Download citation

  • Received:

  • Revised:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00606194

Key words

Navigation