Skip to main content
Log in

The peculiar rheo-optical behavior of bisphenol A-polycarbonate and polymethylmethacrylate

  • Original Contributions
  • Published:
Rheologica Acta Aims and scope Submit manuscript

Abstract

The rheological and stress-optical behavior of the melts of several grades ob bisphenol-A-polycarbonate (PC) and polymethylmethacrylate (PMMA) is investigated. Pertinent flow birefringence measurements are carried out in a remodelled cone-plate apparatus [1]. The shear stress in the polymer melt is calculated from the dynamic moduli, which are determined separately. It is shown that the linear stress optical rule is obeyed. In this way, the stress-optical coefficient C of the melt can be determined. The low-Mw polycarbonates all behave as Maxwellian fluids. The main stress direction does not deviate significantly from 45°. In the temperature range from 160° to 260°C the stress-optical coefficients of the different grades lie between 3 and 4×10−9 Pa−1 and show a weak temperature dependence. The stress-optical coefficient of PMMA is about a factor of 100 lower and shows a peculiar temperature-dependence, changing its sign at 144°C. The results are discussed in terms of the anisotropy of the polarizability of the polymer chain.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  1. van Aken JA, Gortemaker FH, Janeschitz-Kriegl H, Laun HM (1980) Rheol Acta 19:159

    Google Scholar 

  2. Janeschitz-Kriegl H (1969) Adv Polym Sci 6:170

    Google Scholar 

  3. Philippoff W (1956) Nature 178:811

    Google Scholar 

  4. Vinogradov GV, Isayev AI, Mustafaev DA, Podolsky YY (1978) J Appl Polym Sci 22:665

    Google Scholar 

  5. Tsvetkov VN (1964) Soviet Physics Uspek 6:639

    Google Scholar 

  6. Kuske A, Robertson G (1977) Photoelastic stress analysis. J. Wiley, Chichester

    Google Scholar 

  7. Wales JLS, van Leeuwen J, van der Vijgh R (1972) Polym Eng Sci 12:358

    Google Scholar 

  8. Fleissner M (1973) Kunststoffe 63:597

    Google Scholar 

  9. Kamal MR, Tan V (1979) Polym Eng Sci 19:558

    Google Scholar 

  10. Isayev AI (1983) Polym Eng Sci 23:271

    Google Scholar 

  11. Greener J, Kesel R, Contestable BA (1989) AIChE J 35:449

    Google Scholar 

  12. Wimberger-Friedl R (1990) Polym Eng Sci 30:813

    Google Scholar 

  13. Janeschitz-Kriegl H (1983) Polymer melt rheology and flow birefringence. Springer, Berlin

    Google Scholar 

  14. Tant MR, Wilkes GL (1981) Polym Eng Sci 21:874

    Google Scholar 

  15. LeGrand DG, Olszewski WV, Bendler JT. Submitted to Thermochim Acta

  16. Yannas IV, Luise RR (1983) In: Zachariades AE, Porter RS (eds) The strength and stiffness of Polymers. M. Dekker, New York

    Google Scholar 

  17. Kuhn W, Gruen F (1942) Kolloidzeitschrift 101:248

    Google Scholar 

  18. Treloar LRG (1975) The physics of rubber elasticity. 3rd ed., Clarendon Press, Oxford

    Google Scholar 

  19. Lodge AS (1956) Trans Faraday Soc 52:127

    Google Scholar 

  20. Jansen J (1986) Internal Report. Philips Plastics Laboratory

  21. Lub J, Werumeus Buning G (1990) Polymer 31:1009

    Google Scholar 

  22. Jansen J (1984–1985) Internal Reports. Philips Plastics Laboratory

  23. Cox WP, Merz EH (1958) J Polym Sci 28:619

    Google Scholar 

  24. Williams ML, Landel RF, Ferry JD (1955) J Am Chem Soc 77:3701

    Google Scholar 

  25. Coleman BD, Markovits H (1964) J Appl Phys 35:1

    Google Scholar 

  26. Nagai T, Kimizuka Y, Nito K, Seto J. Polym Prepr Japan 35:1142

  27. Retting W (1979) Colloid Polym Sci 257:689

    Google Scholar 

  28. Tsvetkov VN, Verkhotina LN (1958) Sov Phys-Tech Phys 3:87

    Google Scholar 

  29. Andrews RD, Hammack TJ (1964) J Polym Sci C-5:101

    Google Scholar 

  30. Waxler RM, Horowitz D, Feldmann A (1979) Appl Optics 18:101

    Google Scholar 

  31. Looyenga H (1965) Mol Phys 9:501

    Google Scholar 

  32. Champion JV, Desson RA, Meeten GH (1974) Polymer 15:301

    Google Scholar 

  33. Erman B, Marvin DC, Irvine PA, Flory PJ (1982) Macromolecules 15:664

    Google Scholar 

  34. Erman B, Wu D, Irvine PA, Marvin DC, Flory PJ (1982) Macromolecules 15:670

    Google Scholar 

  35. Pietralla M, Schubach HR, Dettenmaier M, Heise B (1985) Progr Colloid Polym Sci 71:125

    Google Scholar 

  36. Biangardi M (1981) Colloid Polym Sci 259:111

    Google Scholar 

  37. Peetz L, Krueger JK, Pietralla M (1987) Colloid Polym Sci 265:761

    Google Scholar 

  38. Wu M-SS (1986) J Appl Polym Sci 32:3263

    Google Scholar 

  39. Vogt HD, Dettenmaier M, Spiess HW, Pietralla M (1990) Colloid Polym Sci 268:22

    Google Scholar 

  40. Pietralla M, Pieper T (1990) Colloid Polym Sci 268:797

    Google Scholar 

  41. Tsvetkov VN, Andreeva LN (1989) In: Bandrup J, Immergut EH (eds) Polymer Handbook. 3rd ed. J. Wiley, New York, VII-577

    Google Scholar 

  42. Gawrisch W, Brereton MG, Fischer EW (1981) Polym Bull 4:687

    Google Scholar 

  43. Ballard DG, Burgess AN, Cheshire P, Janke EW, Nevin A (1981) Polymer 22:1353

    Google Scholar 

  44. Greener J, Machell JS (1990) J Appl Polym Sci 40:221

    Google Scholar 

  45. Werumeus Buning G, Gijsen RMR (1988) Polym Prepr 29:211

    Google Scholar 

  46. Werumeus Buning G, Wimberger-Friedl R, Janeschitz-Kriegl H, Ford TM (1988) In: Lemstra PJ, Kleintjens LA (eds) Integration of fundamental polymer science and technology-2. Elsevier, London, p 405

    Google Scholar 

  47. Shirouzo S, Shigematsu K, Sakamoto S, Nakagawa T, Tagami S (1989) Japan J Appl Physics 28:801

    Google Scholar 

  48. Michel P, Dugas J, Cariou JM, Martin L (1986) J Macromol Sci B25:379

    Google Scholar 

  49. Wales JLS (1976) The application of flow birefringence to rheological studies of polymer melts. Delft University Press, Delft

    Google Scholar 

  50. Heijboer J, Baas JMA, van de Graaf B, Hoefnagel MA (1987) Polymer 28:509

    Google Scholar 

  51. Cowie JMG, Ferguson R (1987) Polymer 28:503

    Google Scholar 

  52. Hong S-D, Chung SY, Fedors RF, Moacanin J (1983) J Polym Sci-Polym Phys 21:1647

    Google Scholar 

  53. Chistyakov YV, Arkhireyew OS, Zuyev BM (1984) Polym Sci USSR 26:2116

    Google Scholar 

  54. Read BE (1967) J Polym Sci C-16:1887

    Google Scholar 

  55. Kurata M, Tsunashima Y (1989) In: Bandrup J, Immergut EH (eds) Polymer Handbook. 3rd ed. J. Wiley, New York, VII-1

    Google Scholar 

  56. Saiz E, Riande E, Mark JE (1984) Macromolecules 17:899

    Google Scholar 

  57. Struik LCE (1978) Polym Eng Sci 18:799

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wimberger-Friedl, R. The peculiar rheo-optical behavior of bisphenol A-polycarbonate and polymethylmethacrylate. Rheola Acta 30, 329–340 (1991). https://doi.org/10.1007/BF00404193

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00404193

Key words

Navigation