Skip to main content
Log in

The development of functional digestive and metabolic organs in turbot, Scophthalmus maximus

  • Published:
Marine Biology Aims and scope Submit manuscript

Abstract

The functional status of organ systems involved into the processing of exogenous food is critical for the survival and growth of fish early life stages. The present study on laboratory-reared larval turbot, Scophthalmus maximus, provides an overview on the ontogeny of structure and functions involved in digestion, absorption and metabolism of nutrients. At start of exogenous feeding the intestine of larval turbot is anatomically differentiated, with enterocytes displaying an adult-type ultrastructure and being able to process lipids. At the microvillous border of the enterocytes, enzymes of contact digestion such as aminopeptidase are found. The ultrastructure of the exocrine pancreatic cells is fully differentiated from hatching onwards. Likewise, substantial activities of trypsin-type proteases are present. A stomach anlage exists in first-feeding larvae; however, the stomach becomes functional (appearance of gastric glands and pepsin secretion) only during metamorphosis. Liver parenchymal cells already display a functional ultrastructure during the endotrophic phase; with onset of exogenous feeding they develop pronounced diet-related changes of their energy stores. Larval respiration is not executed by the gills since respiratory surface of these structures develops only towards metamorphosis. The energy generation of larval muscle tissue depends on aerobic metabolism, whereas glycolytic activities start to increase at metamorphosis. In conclusion, two important patterns can be recognized in the development of turbot larvae: (1) The structure/function is differentiated at hatching or at the onset of exogenous feeding (afterwards it experiences mainly quantitative but not qualitative growth, i.e., intestine, exocrine pancreas, liver); or (2) the structure/function is absent in larvae and develops only during metamorphosis (i.e., gills, glycolytic muscle metabolism, stomach).

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Albertini-Berhaut J (1988) L'intestin chez les Mugilidae (Poissons Téléostéens) à différentes étapes de leur croissance. J appl Ichthyol 4: 65–78

    Google Scholar 

  • Al-Maghazachi SJ, Gibson R (1984) The developmental stages of larval turbot, Scophthalmus maximus (L.). J exp mar Biol Ecol 82: 35–51

    Google Scholar 

  • Balon EK (1984) Reflections on some decisive events in the early life of fishes. Trans Am Fish Soc 113: 178–185

    Google Scholar 

  • Bergot P, Solari A, Luquet P (1975) Comparaison des surfaces absorbantes des caeca pyloriques et de l'intestin chez la truite arcen-ciel (Salmo gairdneri). Annls Hydrobiol 6: 27–43

    Google Scholar 

  • Blaxter JHS (1986) Development of sense organs and behaviour of teleost fish larvae with special reference to feeding and predator avoidance. Trans Am Fish Soc 115: 98–114

    Google Scholar 

  • Blaxter JHS (1988) Pattern and variety in development. In: Hoar WS, Randall DJ (eds) Fish physiology, Vol XIA. Academic Press, San Diego, pp 1–58

    Google Scholar 

  • Burkhardt P, Storch V (1989) Ultrastructural observations on the intestine of golden ide (Leuciscus idus melanotus L.) under different nutritional conditions. In: De Pauw N, Jaspers E, Ackefors H, Wilkins N (eds) Aquaculture—a biotechnology in progress, Vol 2. European Aquaculture Society, Bredene, Belgium, pp 807–812

    Google Scholar 

  • Cousin JCB, Baudin-Laurencin F (1985) Morphogénèse de l'appareil digestif et de la vessie gazeuse du turbot, Scophthalmus maximus L. Aquaculture, Amsterdam 47: 305–319

    Google Scholar 

  • Cousin JCB, Baudin-Laurencin F, Gabaudan J (1987) Ontogeny of enzymatic activities in fed and fasting turbot, Scophthalmus maximus L. J Fish Biol 30: 15–33

    Google Scholar 

  • Dabrowski K (1984) The feeding of fish larvae: present “state of the art” and perspectives. Reprod Nutr Dev 24: 807–833

    Google Scholar 

  • Deplano M, Diaz JP, Connes R, Kentouri-Divanach M, Cavalier F (1991) Appearance of lipid absorption capacities in larvae of the sea bass Dicentrachus labrax during transition to the exotrophic phase. Mar Biol 108: 361–371

    Google Scholar 

  • Diaz JP, Connes R, Divanach P, Barnabe G (1989) Développement du foie et du pancréas du Loup, Dicentrarchus labrax: I. Etude de la mise en place des organes au microscope électronique à balayage. Annls Sci nat (sér Zool) 10: 87–98

    Google Scholar 

  • El-Fiky N, Hinterleitner S, Wieser W (1987) Differentiation of swimming muscles and gills, and development of anaerobic power in the larvae of cyprinid fish (Pisces, Teleostei). Zoomorphology 107: 126–132

    Google Scholar 

  • Escaffre AM, Bergot P (1986) Morphologie quantitative du foie des alevins de truite arc-en-ciel (Salmo gairdneri) issus de gros ou de petits oeufs: incidence de la date du premier repas. Arch Hydrobiol 107: 331–348

    Google Scholar 

  • Forstner H, Hinterleitner S, Mähr K, Wieser W (1983) Towards a better definition of metamorphosis on Coregonus sp.: biochemical, histological and physiological data. Can J Fish aquat Sciences 40: 1224–1232

    Google Scholar 

  • Fyhn HJ (1989) First feeding of marine fish larvae: are free amino acids the source of energy? Aquaculture, Amsterdam 80: 111–120

    Google Scholar 

  • Gabe M (1976) Histological techniques. Masson, Paris Springer, New York

    Google Scholar 

  • Gauthier GF, Landis SC (1972) The relationship of ultrastructure and cytochemical features to absorptive activity in the goldfish intestine. Anat Rec 172: 675–702

    Google Scholar 

  • Govon JJ, Boehlert GW, Watanabe Y (1986) The physiology of digestion in fish larvae. Envir Biol Fish 16: 59–77

    Google Scholar 

  • Hoda SMS, Tsukahara H (1971) Studies on the development and relative growth in the carp, Cyprinus carpio (Linné). J Fac Agric Kyushu University 16: 387–509

    Google Scholar 

  • Hofer R, Nasir Uddin A (1985) Digestive processes during the development of the roach, Rutilus rutilus L. J Fish Biol 26: 683–689

    Google Scholar 

  • Houlihan DF, Pannevis M, Heba H (1991) Protein turnover in fish larvae. In: Lavens P, Sorgeloos P, Jaspers E, Ollevier F (eds) LAR-VI 91—Fish and crustacean aquaculture. European Aquaculture Society. Special Publication No 15. Gent, Belgium, pp 16

    Google Scholar 

  • Iwai T (1969) Fine structure of gut epithelial cells of larval and juvenile carp during absorption of fat and protein. Arch histol jap 30: 183–199

    Google Scholar 

  • Jany KD (1976) Studies on the digestive enzymes of the stomachless bonefish Carassius auratus gibelio (Bloch). Endopeptidases. Comp Biochem Physiol 53 B: 31–38

    Google Scholar 

  • Kjørsvik E, Reiersen AL (1992) Histomorphology of the early yolksac larvae of the Atlantic halibut (Hippoglossus hippoglossus L.) — an indication of the timing of functionality. J Fish Biol 41: 1–10

    Google Scholar 

  • Kjørsvik E, van der Meeren T, Kryvi H, Arnfinnson J, Kvenseth PG (1991) Early development of the digestive tract of cod larvae, Gadus morhua L., during start-feeding and starvation. J Fish Biol 38: 1–15

    Google Scholar 

  • Korsgaard B (1991) Metabolism of larval turbot, Scophthalmus maximus (L.) and uptake of amino acids from seawater studied by autoradiography and radiochemical methods. J exp mar Biol Ecol 148: 1–10

    Google Scholar 

  • Kotrschal K, Adam H, Brandstätter R, Junger H, Zaunreiter M, Goldschmid A (1990) Larval size constraints determine directional ontogenetic shifts in the visual system of teleosts. Z zool Syst EvolForsch 28: 166–182

    Google Scholar 

  • Kunitz M (1947) Crystalline soybean trypsin inhibitor. II. General properties. J gen Physiol 30: 291–310

    Google Scholar 

  • Munilla-Moran R, Stark JR (1989) Protein digestion in early turbot larvae, Scophthalmus maximus L. Aquaculture, Amsterdam 81: 315–327

    Google Scholar 

  • Osse JWM (1989) A functional explanation for a sequence of developmental events in the carp. The absence of gills in early larvae. Acta morph neerl-scand 27: 111–118

    Google Scholar 

  • Osse JWM (1990) Form changes in fish larvae in relation to changing demands of function. Neth J Zool 40: 362–385

    Google Scholar 

  • Pittman K, Skiftesvik AB, Berg L (1990) Morphological and behavioural development of halibut, Hippoglossus hippoglossus (L.) larvae. J Fish Biol 37: 455–472

    Google Scholar 

  • Quantz G, Jäger T, Witt U (1988) Steinbuttzucht an der Kieler Förde. In: Rosenthal H, Saint-Paul U, Hilge V (eds) Perspektiven der Deutschen Aquakultur. Biologische Anstalt Helgoland, Zentrale Hamburg, Hamburg, Germany, pp 41–50

    Google Scholar 

  • Rombough PJ (1988) Respiratory gas exchange, aerobic metabolism and effects of hypoxia during early life. In: Hoar WS, Randall DJ (eds) Fish physiology, Vol XI. Academic Press, San Diego, pp 59–162

    Google Scholar 

  • Rønnestadt I, Fyhn HJ, Gravningen K (1992) The importance of free amino acids to the energy metabolism of eggs and larvae of turbot (Scophthalmus maximus). Mar Biol 114: 517–525

    Google Scholar 

  • Segner H, Braunbeck T (1990) Adaptive changes of liver composition and structure in golden ide during winter acclimatization. J exp Zool 255: 171–185

    Google Scholar 

  • Segner H, Burkhardt P, Avila EM, Juario JV, Storch V (1987) Nutrition-related histopathology of the intestine of milkfish, Chanos chanos, fry. Dis aquat Org 2: 99–107

    Google Scholar 

  • Segner H, Orejana-Acosta B, Juario JV (1984) The effect of Brachionus plicatilis grown on three different species of phytoplankton on the ultrastructure of the hepatocytes of Chanos chanos (Forskal) fry. Aquaculture, Amsterdam 42: 109–115

    Google Scholar 

  • Segner H, Rösch R, Schmidt H, von Poeppinghausen KJ (1988) Studies on the suitability of commercial dry diets for rearing of larval Coregonus lavaretus from Lake Constance. Aquat Living Resour 1: 231–238

    Google Scholar 

  • Segner H, Rösch R, Schmidt H, von Poeppinghausen KJ (1989) Digestive enzymes in larval Coregonus lavaretus L. J Fish Biol 35: 249–263

    Google Scholar 

  • Segner H, Rösch R, Verreth J, Witt U (1993) Larval nutritional physiology: studies with Clarias gariepinus, Coregonus lavaretus and Scophthalmus maximus. J Wld Aquacult Soc 24: 121–134

    Google Scholar 

  • Segner H, Witt U (1990) Weaning experiments with turbot (Scophthalmus maximus): electron microscopic study of the liver. Mar Biol 105: 353–361

    Google Scholar 

  • Storch V, Stählin W, Juario JV (1983) Effect of different diets on the ultrastructure of Chanos chanos fry (Chanidae: Teleostei): an electronic microscopic and morphometric analysis. Mar Biol 74: 101–104

    Google Scholar 

  • Stroband HWJ, Meer H van der, Timmermans LPM (1979) Regional functional differentiation in the gut of the grasscarp, Ctenopharyngodon idella (Val.). Cell Tissue Res 187: 181–200

    Google Scholar 

  • Strüssmann CA, Takashima F (1990) Hepatocyte nuclear size and nutritional condition of larval pejerrey, Odontesthes bonariensis (Cuvier and Valenciennes). J Fish Biol 36: 59–65

    Google Scholar 

  • Timmermans LP (1987) Early development and differentiation in fish. Sarsia 72: 331–339

    Google Scholar 

  • Überschär B (1993) Measurement of proteolytic enzyme activity: significance and application in larval fish research. In: Walther BT, Fyhn HJ (eds) Physiology and biochemistry of fish larval development. University of Bergen Press, Bergen, pp 233–239

    Google Scholar 

  • Verner JM (1975) Etude ultrastructurales des lipoprotéines hépatiques de trés basse densité au cours du developpement de la truite arc-en-ciel, Salmo gairdneri Rich. J Microscopie Biol cell 23: 39–56

    Google Scholar 

  • Verreth J, Storch V, Segner H (1987) A comparative study on the nutritional quality of decapsulated Artemia cysts, micro-encapsulated egg diets and enriched dry feeds for Clarias gariepinus (Burchell) larvae. Aquaculture, Amsterdam 63: 269–282

    Google Scholar 

  • Verreth J, Toreele E, Spazier E, Sluiszen A van der, Rombout J, Booms R, Segner H (1992) The development of a functional digestive system in the African catfish Clarias gariepinus (Burchell). J Wld Aquacult Soc 23: 286–298

    Google Scholar 

  • Walford J, Lam TJ (1993) Development of digestive tract and proteolytic enzyme activity in seabas (Lates calcarifer) larvae and jueeniles. Aquaculture, Amsterdam 109: 187–205

    Google Scholar 

  • Walter HE (1984) Proteinases: methods with hemoglobin, casein and azocoll as substrates. In: Bergmeyer HU (ed) Methods of enzymatic analysis, Vol 5. VCH, Weinheim, pp 270–277

    Google Scholar 

  • Weibel ER, Stäubli W, Gnägi HR, Hess FA (1969) Correlated morphometric and biochemical studies on the liver cell. I. Morphometric model, stereologic methods, and normal morphometric data for rat liver. J Cell Biol 42: 68–91

    Google Scholar 

  • Witt U, Quantz G, Kuhlmann D, Kattner G (1984) Survival and growth of turbot larvae Scophthalmus maximus L. reared on different food organisms with special regard to long-chain polyunsaturated fatty acids. Aquacult Eng 3: 177–190

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

Communicated by O. Kinne, Oldendorf/Luhe

Rights and permissions

Reprints and permissions

About this article

Cite this article

Segner, H., Storch, V., Reinecke, M. et al. The development of functional digestive and metabolic organs in turbot, Scophthalmus maximus . Marine Bioliogy 119, 471–486 (1994). https://doi.org/10.1007/BF00347544

Download citation

  • Received:

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00347544

Keywords

Navigation