Skip to main content
Log in

Analyse der Sorbose-Resistenz von Neurospora crassa an Heterokaryen sorboseresistenter Mutanten; ein Beitrag zur Genetik des aktiven Transports, I.

  • Published:
Molecular and General Genetics MGG Aims and scope Submit manuscript

Summary

Suitable auxotrophic markers were introduced into sorbose-resistant mutants and the sorbose-sensitive wildtype strain. Pairwise combinations of one resistant and one sensitive strain each as well as of two sensitive strains were then grown on minimal-agar to obtain forced heterocaryons. The growth behaviour of these on minimal-agar with and without added sorbose was compared.

Of seven resistant mutants, representing six separate genes, among which were genes A and B, six mutants were recessive to the wildtype. The seventh, representing gene C, was recessive only with regard to colony-size, but intermediate with regard to germination counts. Heterocaryons forced between pairs of 2 closely linked mutants (intragenic case of the type A 1+A 2) were resistant, as were the separate mutants. However two heterocaryons forced between pairs of unlinked mutants (intergenic case of the type A+B) were sorbose sensitive. Heterocaryons forced between A or B-mutants and the C-mutant mentioned, unlinked to either A or B (intergenic cases of the type A+C and B+C) were more sensitive than the separate mutants but more resistant than the wildtype.

It follows that sorbose-resistant mutants in heterocaryons of the intergenic types can complement each others defects (no growth complementation), but can not do so in heterocaryons of the intragenic type. Their complementation is considered to be the result of the activity of the intact wildtype genes homologous to the defective ones that are contained together in the multinucleate cells of the heterocaryons. This complementation may be taken as evidence for the recessiveness resp. intermediate expression of the different resistant mutants.

Since none of the mutants checked so far were dominant compared to the wildtype, none of them can be a regulator-mutant. The possibility of explaining them as suppressor mutants is restricted by their recessiveness to mechanisms of suppression giving a recessive phenotype. An alternative explanation suggests that the respective wildtype genes may contain structural information for the synthesis of permeases involved in sorbose transport. The mutants would then be resistant due to defective permeases. Their recessiveness is in full accord with this suggestion.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

Literatur

  • Ames, G. F.: Uptake of amino acids by Salmonella typhimurium. Arch. Biochem. 104, 1 (1964).

    Google Scholar 

  • Barratt, R. W., E. Käfer, and W. N. Ogata: Laboratory outline for a course on selected methods in genetics of filamentous fungi (Neurospora and Aspergillus), p. 22. Biological Laboratory, Cold Spring Harbor, New York 1957.

    Google Scholar 

  • Beadle, G. W., and E. L. Tatum: Genetic control of biochemical reactions in Neurospora. Proc. nat. Acad. Sci. (Wash.) 27, 499 (1941).

    Google Scholar 

  • Busk, B. G. De, and A. G. De Busk: A phenylalanine permease system in Neurospora crassa. Neurospora Newsletter 6, 12 (1964).

    Google Scholar 

  • —, J. Mallon, and A. G. De Busk: Radiation inactivation analysis of amino acid transport systems in Neurospora crassa. Neurospora Newsletter 8, 3 (1965) und Radiat. Res. (im Druck).

    Google Scholar 

  • Egan, J. B., and M. L. Morse: Carbohydrate transport in Staphylococcus aureus. I. Genetic and biochemical analysis of a pleiotropic transport mutant. Biochim. biophys. Acta (Amst.) 97, 310 (1965a).

    Google Scholar 

  • —: Carbohydrate transport in Staphylococcus aureus. II. Characterization of the defect of a pleiotropic transport mutant. Biochim. biophys. Acta (Amst.) 109, 172 (1965b).

    Google Scholar 

  • —: Carbohydrate transport in Staphylococcus aureus. III. Studies of the transport process. Biochim. biophys. Acta (Amst.) 112, 63 (1966).

    Google Scholar 

  • Horowitz, N. H.: Methionine synthesis in Neurospora. The isolation of cystathionine. J. biol. Chem. 171, 255 (1947).

    Google Scholar 

  • Klingmüller, W.: Growing Neurospora colonies attached to a glass surface in liquid medium. Neurospora Newsletter 3, 9 (1963a).

    Google Scholar 

  • —: Regulatory function of sorbose on sugar metabolism in Neurospora. Genetics Today. Proc. XI. internat. Congr. Genetics. The Hague 1, 37 (1963b).

    Google Scholar 

  • —: Regulatory function of sorbose on sugar metabolism in Neurospora. Erwin-Baur-Gedächtnisvorlesungen, Bd. III, S. 205 (1963c). Berlin: Akademie-Verlag 1964.

    Google Scholar 

  • — Der Einfluß des Wassergehaltes auf Inaktivierung und Mutationsrate von röntgen-und gammabestrahlten Neurospora crassa-Conidien. Z. Vererbungsl. 96, 116 (1965).

    Google Scholar 

  • —: Aktive Aufnahme von Zuckern durch Zellen von Neurospora crassa unter Beteiligung eines enzymatischen Systems mit Permeaseeigenschaften, I. und II. Z. Naturforsch. 22b, 181 u. 188 (1967 a und b).

    Google Scholar 

  • —: Die Aufnahme der Zucker Sorbose, Fructose und Glucose durch sorboseresistente Mutanten von Neurospora crassa. Z. Naturforsch. 22b, 327 (1967c).

    Google Scholar 

  • —: Kreuzungsanalyse sorboseresistenter Mutanten von Neurospora crassa. Molec. Gen. Genetics 100, 109–116 (1967d).

    Google Scholar 

  • —, and F. Kaudewitz: Sorbose resistant mutants in Neurospora crassa. Neurospora Newsletter 4, 9 (1963).

    Google Scholar 

  • Klingmüller, W., and F. Kaudewitz: Permease mutants in Neurospora crassa and their complementation characteristics. Proc. Symp. Mutational Process, p. 309. Academia Prague (1966a).

  • —: Genetische und biochemische Untersuchungen zur Zuckeraufnahme keimender Conidien von Neurospora crassa. Ber. deutsch. bot. Ges. 79, 213 (1966b).

    Google Scholar 

  • Klingmüller, W., and F. Kaudewitz “No-growth”-complementation in forced heterocaryons from sorbose-resistant (transport-defective) Neurospora crassa mutants. Z. Naturforsch. (im Druck) (1967).

  • Lewis, D.: Genetical analysis of methionine suppressors in Coprinus. Genet. Res. 2, 141 (1961).

    Google Scholar 

  • Pittenger, T. H., A. W. Kimball, and K. C. Atwood: Control of nuclear ratios in Neurospora heterocaryons. Amer. J. Bot. 42, 954 (1955).

    Google Scholar 

  • Serres, F. J. De, H. G. Kølmark, and H. E. Brockman: Factors influencing the survival of Neurospora crassa conidia in sorbose-sucrose media. Nature (Lond.) 193, 556 (1962).

    Google Scholar 

  • Westergaard, M., and H. K. Mitchell: Neurospora V. A. synthetic medium favouring sexual reproduction. Amer. J. Bot. 34, 573 (1947).

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Additional information

II. Teil einer Habilitationsschrift bei der Naturwissenschaftlichen Fakultät der Universität München.

Rights and permissions

Reprints and permissions

About this article

Cite this article

Klingmüller, W. Analyse der Sorbose-Resistenz von Neurospora crassa an Heterokaryen sorboseresistenter Mutanten; ein Beitrag zur Genetik des aktiven Transports, I.. Molec. Gen. Genetics 100, 117–139 (1967). https://doi.org/10.1007/BF00333599

Download citation

  • Received:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00333599

Navigation