Skip to main content
Log in

Surface energy balance, parameterizations of boundary-layer heights and the application of resistance laws near an Antarctic Ice Shelf front

  • Published:
Boundary-Layer Meteorology Aims and scope Submit manuscript

Abstract

A study of the surface energy balance with turbulent fluxes obtained by the Monin-Obukhov similarity theory and a comparison with results for resistance laws are presented for the strong baroclinic conditions in the vicinity of the Filchner/Ronne Ice Shelf front. The data are taken from a field experiment in the Antarctic summer season 1983/84. For the first time in the coastal Antarctic region, this data set comprises synchronous energy balance measurements over the polynya and the ice shelf together with soundings of the boundary layer, yielding vertical profiles of the wind velocity and temperature over the ice shelf, at the ice shelf front and over the polynya.

Over the ice shelf, the radiation balance is the largest component of the energy fluxes and is mainly compensated by the subsurface energy flux and the turbulent heat flux in the daily mean. Over the polynya, turbulent fluxes of sensible and latent heat lead to large energy losses of the water surface in the night-time and in situations of very low air temperatures.

Different parameterizations for boundary-layer height are compared using tethered sonde and energy balance measurements. With the height of the inversion base over the polynya and the height of the critical bulk Richardson number over the ice shelf, external parameters for the application of resistance laws were determined. The comparison of turbulent surface fluxes obtained by the energy balance measurements and by the resistance laws shows good agreement for the convective conditions over the polynya. For the stably stratified boundary layer over the ice shelf with small amounts of the turbulent heat flux, the deviation is large for the case of a cold air outflow with a superposed inertial oscillation.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References

  • Allison, I.: 1972, ‘A Sample Study of the Energy Fluxes Preceding and Accompanying the Formation of Antarctic Sea Ice’, in Orwig, S. (ed.), Energy Fluxes over Polar Surfaces, WMO Tech. Note 129, pp. 115–132.

  • Andreas, E. L.: 1987, ‘Spectral Measurements in a Disturbed Boundary Layer over Snow’, J. Atmos. Sci. 44, 1912–1939.

    Google Scholar 

  • Andreas, E. L. and Makshtas, A. P.: 1985, ‘Energy Exchange over Antarctic Sea Ice in Spring’, J. Geophys. Res. 90, 7199–7212.

    Google Scholar 

  • Andreas, E. L., Paulson, C. A., Williams, R. M., Businger, I. A., and Lindsay, R. W.: 1979, ‘The Turbulent Heat Flux from Arctic Leads’, Boundary-Layer Meteorol. 17, 57–91.

    Google Scholar 

  • Arya, S. P. S.: 1975, ‘Geostrophic Drag and Heat Transfer Relations for the Atmospheric Boundary Layer’, Q. J. R. Meteorol. Soc. 101, 147–161.

    Google Scholar 

  • Arya, S. P. S.: 1984, ‘Parametric Relations for the Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 30, 57–73.

    Google Scholar 

  • Billard, C., André, J.-C., and DuVachat, R.: 1981, ‘On the Similarity Functions A and B as Determined from the VOVES-Experiment’, Boundary-Layer Meteorol. 21, 495–507.

    Google Scholar 

  • Belitz, H.-J.: 1989, ‘Impuls- und Energietransporte über einem antarktischen Schelfeis’, Ber. des Inst. für Met. und Klimat. Hannover 37, 147 pp.

    Google Scholar 

  • Blaix, P. L.: 1979, ‘Contribution a l'étude des characteristiques moyennes de la couche limite de surface en zone cotière de la terre Adelie (Antarctique)’, Centre National de la Recherche Scientifique, Laboratoire de Glaciologie et Géophysique de l'Environnement, Publication No. 307.

  • Brown, R. A.: 1982, ‘On Two-Layer Models and the Similarity Functions for the PBL’, Boundary-Layer Meteorol. 24, 451–463.

    Google Scholar 

  • Businger, J. A., Wyngaard, J. C., Izumi, Y., and Bradley, E. F.: 1971, ‘Flux Profile Relationships in the Atmospheric Surface Layer’, J. Atmos. Sci. 28, 181–189.

    Google Scholar 

  • Carroll, J. J.: 1982, ‘Long-Term Means and Short-Term Variability of the Surface Energy Components at the South Pole’, J. Geophys. Res. 87, 4277–4286.

    Google Scholar 

  • Clarke, R. H.: 1975, ‘Note on Baroclinity and the Inverse Behaviour of Surface Stress and Wind Turning in the Boundary Layer’, Beitr. Phys. Atmos. 48, 46–50.

    Google Scholar 

  • Clarke, R. H. and Hess, G. H.: 1974, ‘Geostrophic Departure and the Functions A and B of Rossby-number-Similarity Theory’, Boundary-Layer Meteorol. 7, 267–287.

    Google Scholar 

  • Caughey, S. J., Wyngaard, J. C., and Kaimal, J. C.: 1979, ‘Turbulence in the Evolving Stable Boundary Layer’, J. Atmos. Sci. 36, 1041–1052.

    Google Scholar 

  • Dalrymple, P. C., Lettau, H. H., and Wollaston, S. H.: 1966, ‘South Pole Micrometeorological Program: Data Analysis’, Antarctic Research Ser. 9, Amer. Geophys. Union, pp. 13–17.

  • Den Hartog, G., Smith, S. D., Anderson, R. J., Topham, D. R., and Perkin, R. G.: 1983, ‘An Investigation of a Polynya in the Canadian Archipelago, 3, Surface Heat Flux’, J. Geophys. Res. 88, 2911–2916.

    Google Scholar 

  • Driedonks, A. G. M. and Tennekes, H.: 1984, ‘Entrainment Effects in the Well-Mixed Atmospheric Boundary Layer’, Boundary-Layer Meteorol. 30, 75–105.

    Google Scholar 

  • Engelbart, D.: 1989, ‘Der turbulente Strom fühlbarer Wärme im Einfluβbereich antarktischer Küstenpolynyen’, Meteorol. Rdsch. 41, 111–121.

    Google Scholar 

  • Fiedler, F.: 1972, ‘The Effect of Baroclinity on the Resistance Laws in a Diabatic Ekman Layer’, Beitr. Phys. Atmos. 45, 164–173.

    Google Scholar 

  • Garratt, J. R.: 1982, ‘Surface Fluxes and the Nocturnal Boundary Layer Height’, J. Appl. Meteorol. 21, 725–729.

    Google Scholar 

  • Gutman, L. N. and Melgarejo, J. H.: 1981, ‘On the Laws of Momentum and Heat Transfer over a Slightly Inclined Terrain’, J. Atmos. Sci. 38, 1714–1724.

    Google Scholar 

  • Halbsguth, G.: 1985, ‘Fallstudie einer Mesostörung im Bereich der Filchner-Station’, Filchner Rönne Ice Shelf Programme Report 2, Alfred-Wegener-Institute for Polar Research, Bremerhaven, FRG, pp. 96–103.

    Google Scholar 

  • Hanna, S. R.: 1969, ‘The Thickness of the Planetary Boundary Layer’, Atmos. Environ. 3, 519–536.

    Google Scholar 

  • Hanna, S. R., Burkhart, C. L., and Paine, R. J.: 1985, ‘Mixing Height Uncertainties’, Seventh Symposium on Turbulence and Diffusion, Nov. 1985, Boulder, Colorado, pp. 82–85.

  • Hanson, J. H.: 1960. ‘Radiation Measurement on the Antarctic Snowfield, a Preliminary Report’. J. Geophys. Res. 65, 935–946.

    Google Scholar 

  • Hanson, K. J. and Rubin, M. J.: 1962, ‘Heat Exchange at the Snow-Air Interface at the South Pole’, J. Geophys. Res. 67, 3415–3424.

    Google Scholar 

  • Heinemann, G.: 1987. ‘Grenzschicht-Strukturen und -Haushalte im Bereich der Filchner-Schelfeiskante (Antarktis)’. Dissertation, lMeteorol, Institut der Universität Bonn, 145 pp.

  • Heinemann, G.: 1988, ‘On the Structure and Energy Budget of the Boundary Layer in the Vicinity of the Filchner/Ronne Ice Shelf Front (Antarctica)’, Beitr. Phys. Atmos. 61. 244–258.

    Google Scholar 

  • Heinemann, G.: 1989, ‘On the Roughness Length z0 at the Snow Surface of the Filchner/Ronne Ice Shelf’, Polarforschung 59.

  • Hicks, B. B. and Martin, H. C.: 1972. ‘Atmospheric Turbulent Fluxes over Snow’, Boundary-Layer Meteorol. 2, 496–502.

    Google Scholar 

  • Holmgren, B.: 1971, ‘Climate and Energy Exchange on a Sub-Polar Ice Cap in Summer’, Meteorol. Inst. Uppsala Universitet, Uppsala.

    Google Scholar 

  • Hsu, S. A.: 1986, ‘A Note on Estimating the Height of the Convective Internal Boundary Layer near Shore’, Boundary-Layer Meteorol. 35, 311–316.

    Google Scholar 

  • Kaimal, J. C., Wyngaard, J. C., Haugen, D. A., Coté, O. R., and Izumi, Y.: 1976. ‘Turbulence Structure in the Convective Boundary Layer’, J. Atmos. Sci. 33, 2152–2169.

    Google Scholar 

  • Kaimal, J. C., Abshire, N. L., Chadwick, R. B., Decker, M. T., Hooke, W. H., Kropfli, R. A., Neff, W. D., and Pasqualucci, F.: 1982, ‘Estimating the Depth of the Daytime Convective Boundary Layer’, J. Appl. Meteorol. 21, 1123–1129.

    Google Scholar 

  • Kottmeier, C.: 1988, ‘Atmosphärische Strömungsvorgänge am Rande der Antarktis’, Ber. des Inst. für Met. und Klimat. Hannover 33, 153 pp.

    Google Scholar 

  • Kraus, H.: 1973, ‘Energy Exchange at Air-Ice Interface’. Proceedings of the BANFF Symposia, Sept. 1972, UNESCO, WMO-IAHS.

  • Kühn, M., Kundla, L. S., and Stroschein, L. A.: 1977, ‘The Radiation Budget at Plateau Station, Antarctica, 1966–1967’, Antarct. Res. Ser. 25, Amer. Geophys. Union, pp. 41–73.

  • Lange, M. A.: 1984, ‘Measurements of Thermal Parameters in Antarctic Snow and Firn’, Ann. Glaciol. 6, 100–104.

    Google Scholar 

  • Large, W. G. and Pond, S.: 1981, ‘Open Ocean Momentum Flux Measurements in Moderate to Strong Winds’, J. Phys. Oceanogr. 11, 324–336.

    Google Scholar 

  • Liljequist, G. H.: 1957, ‘Energy Exchange of an Antarctic Snow-Field, Norwegian-British-Swedish Antarctic Expedition 1949–52’, Scientific Results, Vol. II. Norsk Polarinstitutt Oslo.

  • Mahrt, L.: 1981, ‘Modelling the Depth of the Stable Boundary Layer’, Boundarv-Layer Meteorol. 21, 3–19.

    Google Scholar 

  • Mahrt, L., Heald, R. C., Lenschow, D. H., Stankow, B. B., and Troen, I.: 1979, ‘An Observational Study of the Structure of the Nocturnal Boundary Layer’, Boundary-Layer Meteorol. 17, 247–264.

    Google Scholar 

  • Male, D. H.: 1980, ‘The Seasonal Snowcover’, in S. C. Colbeck (ed.), Dynamics of Snow and Ice Masses, Academic Press, San Francisco, 468 pp.

    Google Scholar 

  • Marquardt, D. W.: 1963. ‘An Algorithm for Least-Square-Estimates of Nonlinear Parameters’, J. Soc. Ind. Appl. Math. 11, 431–441.

    Google Scholar 

  • Nieuwstadt, F.: 1978, ‘The Computation of the Friction Velocity u * and the Temperature Scale T * from Temperature and Wind Velocity Profiles by Least-Square Methods’, Boundary-Layer Meteorol. 14, 235–246.

    Google Scholar 

  • Nieuwstadt, F.: 1984, ‘Some Aspects of the Turbulent Stable Boundary Layer’, Boundary-Layer Meteorol. 30, 31–55.

    Google Scholar 

  • Panofsky, H. A. and Dutton, J. A.: 1984, Atmospheric Turbulence, John Wiley & Sons, New York, 397 pp.

    Google Scholar 

  • Paulson, C. A.: 1970, ‘The Mathematical Representation of Wind Speed and Temperature Profiles in the Unstable Atmospheric Surface Layer’, J. Appl. Meteorol. 9, 857–861.

    Google Scholar 

  • Raabe, A.: 1986, ‘Zur Höhe der Internen Grenzschicht der Atmosphäre bei Ablandigem Wind über See’, Z. Meteorol. 36, 308–311.

    Google Scholar 

  • Rose, L.: 1988, ‘Der Abfluβ antarktischer Kaltluft vom Filchner-Schelfeis und seine Veränderung im Bereich von Eisfront und Küstenpolynia’, Ber. des Inst. für Met. und Klimat. Hannover 30.

    Google Scholar 

  • Rusin, N. P.: 1961, ‘Meteorological and Radiational Regime of Antarctica’, Israel Program for Scientific Translations, Jerusalem, 1964, 355 pp.

    Google Scholar 

  • Schaller, E.: 1985, ‘Die Umstellung der atmosphärischen Grenzschicht beim Durchgang einer synoptischen Störung im Bereich der Filchner-Station’, Filchner Ronne Ice Shelf Programme Report 2, Alfred-Wegener-Institute for Polar Research, Bremerhaven, FRG, pp. 72–77.

    Google Scholar 

  • Schaller, E. and Rose, L.: 1988, Die Strömungsverhältnisse im Bereich der Filchner-Schelfeiskante unter sommerlichen Bedingungen, Promet 4, Deutscher Wetterdienst, Offenbach, FRG, pp. 11–16.

  • Smith, S. D., Anderson, R. J., den Hartog, G., Topham, D. R., and Perkin, R. G.: 1983. ‘An Investigation of a Polynya in the Canadian Archipelago. 2. Structure of Turbulence and Sensible Heat Flux’, J. Geophys. Res. 88. 2900–2910.

    Google Scholar 

  • Sorbjan, Z.: 1983a. ‘Rossby-Number Similarity in the Atmospheric Boundary Layer over a Slightly Inclined Terrain’, J. Atmos. Sci. 40, 718–728.

    Google Scholar 

  • Sorbjan, Z.: 1983b. ‘Effects of Baroclinicity on Resistance Laws for the Atmospheric Boundary Layer over a Slightly Inclined Terrain’, J. Atmos. Sci. 40, 729–737.

    Google Scholar 

  • Schwerdtfeger, P. and Weller, G. E.: 1977, ‘Radiative Heat Transfer Processes in Snow and Ice. Met. Studies at Plateau Station, Antarctica’, Antarct. Res. Ser. 25, Amer. Geophys. Union, pp. 35–39.

  • Stull, R. B.: 1983, ‘A Heat-Flux History Length Scale for the Nocturnal Boundary Layer’, Tellus 35A, 219–230.

    Google Scholar 

  • Stunder, M. and Sethuraman, S.: 1985. ‘A Comparative Evaluation of the Coastal Internal Boundary Layer Equations’, Boundary-Layer Meteorol. 32. 177–204.

    Google Scholar 

  • Weller, G.: 1980. ‘Spatial and Temporal Variations in the South Polar Surface Energy Balance’, Mon. Wea. Rev. 108, 2006–2014.

    Google Scholar 

  • Wendler, G., Ishikawa, N., and Kodama, Y.: 1988. ‘The Heat Balance of the Icy Slope of Adelie Land, Eastern Antarctica’, J. Appl. Meteorol. 27, 52–65.

    Google Scholar 

  • Wetzel, P. J.: 1982, ‘Toward Parameterization of the Stable Boundary Layer’, J. Appl. Meteorol. 21, 7–13.

    Google Scholar 

  • Wieringa, J.: 1980, ‘A Revaluation of the Kansas Mast Influence on Measurements of Stress and Cup Anemometer Overspeeding’, Boundary-Layer Meteorol. 18, 411–430.

    Google Scholar 

  • Wippermann, F.: 1972, ‘Empirical Formulae for the Universal Functions M m(Μ) and N(Μ) in the Resistance Laws for a Barotropic and Diabatic Planetary Boundary Layer’, Beitr. Phys. Atmos. 45. 305–311.

    Google Scholar 

  • Yamada, T.: 1976, ‘On the Similarity Functions A. B and C of the Planetary Boundary Layer’, J. Atmos. Sci. 33. 781–793.

    Google Scholar 

  • Yordanov, D. and Wippermann, F.: 1972, ‘The Parameterization of the Turbulent Fluxes of Momentum, Heat and Moisture at the Ground in a Baroclinic Planetary Boundary Layer’, Beitr. Phys. Atmos. 45, 58–65.

    Google Scholar 

  • Zilitinkevich, S. S.: 1972, ‘On the Determination of the Height of the Planetary Boundary Layer’, Boundary-Layer Meteorol. 3, 141–145.

    Google Scholar 

  • Zilitinkevich, S. S.: 1975, ‘Resistance Laws and Prediction Equation for the Depth of the Planetary Boundary Layer’, J. Atmos. Sci. 32. 741–752.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Heinemann, G., Rose, L. Surface energy balance, parameterizations of boundary-layer heights and the application of resistance laws near an Antarctic Ice Shelf front. Boundary-Layer Meteorol 51, 123–158 (1990). https://doi.org/10.1007/BF00120464

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00120464

Keywords

Navigation