Skip to main content
Log in

23. The biology of Antarctic saline lakes

  • Published:
Hydrobiologia Aims and scope Submit manuscript

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

References

  • Akatova, N. A., 1964. The occurrence of Daphniopsis studeri Rühe (Cladocera) in the lake of the Vestfold Hills, East Antarctica. (Russian) Rezul'taty Biol. Issled. Sovet, Antarkt. Eksp. (1955–1958 gg) 2, Moskva, Akad, Nauk, SSSR, Zool. Inst. Issled. Fauny Morei, 2(10): 185–188. (English translation: Biological Results of the Soviet Antarctic Expedition (1955–1958) Studies of Marine Fauna: 2.) Israel Program for Scientific Translation, Jerusalem, 1968, pp. 190–193.

  • Akiyama, M., 1975. Plankton and bottom deposits of Lake Funazoko-IKe in Skarvs Nes, Antarctica. Shimane Univ. Education Dept. Lett. 9: 29–42.

    Google Scholar 

  • Anita, N. J., 1976. Effects of temperature on the darkness survival of marine microplanktonic algae. Microbial Ecol. 3: 41–54.

    Google Scholar 

  • Aoki, K. & Konno, H., 1961. Frost resistance of the Rotifer in Antarctic Region. Bull. Mar. Biol. Station Asamuhi 10: 247–250.

    Google Scholar 

  • Armitage, K. B. & House, H. B., 1962. A limnological reconnaissance in the area of McMurdo sound, Antarctica. Limnol. Oceanogr. 7: 36–41.

    Google Scholar 

  • Baker, A. N., 1967. Algae from Lake Miers, a solar-heated Antarctic lake. N.Z. J. Bot. 5: 453–468.

    Google Scholar 

  • Barghoorn, E. S. & Nichols, R. L., 1961. Sulphate-reducing bacteria and pyritic sediments in Antarctica. Science, N.Y. 134: 190.

    Google Scholar 

  • Barker, R. J., 1977. A biological reconnaissance of the Bunger Hills (March 1977). ANARE Technical Memorandum No. 67.

  • Baross, J. A. & Morita, R. Y., 1978. Microbial life at low temperatures, ecological aspects. In: D. J. Kushner (ed.) Microbial Life in Extreme Environments. Academic Press, New York.

    Google Scholar 

  • Bayly, I. A. E., 1978. The occurrence of Paralabodocera antarctica (I. C. Thompson) (Copepoda: Calanoida: Acartiidaea) in an Antarctic saline lake. Aust. J. Mar. Freshwat. Res. 29: 817–824.

    Google Scholar 

  • Becker, E. W., 1970. Studies on low-temperature photosynthesis of algae. Antarct. J. U.S. 5: 121–122.

    Google Scholar 

  • Ben-Amotz, A., 1975. Adaptation of the unicellular alga Dunaliella parva to a saline environment. J. Phycol. 11: 50–54.

    Google Scholar 

  • Ben Amotz, A. & Avron, M., 1972. Photosynthesis activities of the halophilic alga, Dunaliella parva. Pl. Physiol., Lancaster, 49: 240–243.

    Google Scholar 

  • Ben-Amotz, A. & Avron, M., 1973. The role of glycerol in the osmotic regulation of the halophilic alga, Dunaliella parva. Pl. Physiol., Lancaster 51: 875–878.

    Google Scholar 

  • Benoit, R. E. & Hall, C. L., 1962. The microbiology of some dry valley soils of Victoria Land, Antarctica. In: M. W. Holdgate (ed.) Antarctic Ecology. Vol. 2. Academic Press, New York.

    Google Scholar 

  • Benoit, R. E., Hatcher, R. & Green, W., 1971. Bacteriological profiles and some chemical characteristics of two permanently frozen Antarctic Lakes. In: J. Cairns, Jr. (ed.) The Structure and Function of Fresh-Water Microbial Communities. Virginia Polytechnic and State University, Blacksburg.

    Google Scholar 

  • Bienati, N. L., 1967. Estudio limnologico del Lago Irizar, Isla Decepcion, Shetland del Sur. Contributiones, Instituto antarctico Argentino, 111: 1–36.

    Google Scholar 

  • Bierle, D. A., 1969. The ecology of an Antarctic freshwater lake with emphasis on the ciliate protozoa. Ph.D. thesis, University of South Dakota, U.S.A.

    Google Scholar 

  • Borowitzka, L. J. & Brown, A. D., 1974. The salt relations of marine and halophilic species of the unicellular green alga, Dunaliella. The role of glycerol as a compatible solute. Arch. Mikrobiol. 96: 37–52.

    Google Scholar 

  • Borutsky, E. V. & Vinogradov, M. E., 1957. [A discovery of Cyclopoidae (Acanthocyclops mirnyi n.sp.) on the continent of Antarctica.] Zool. Zh. 36: 199–203. [In Russian].

    Google Scholar 

  • Bourrelly, P., 1968. Les Algues D'eau Douce, Initiation à la systématique. Vol. 2. Les algues jaunes et brunes, Chrysophycées, Pheophycées, Xanthophycées et Diatomées. Editions N. Boubee & Cie, Paris.

    Google Scholar 

  • Bourrelly, P., 1970. Les Algues D'eau Douce, Initiation à la Systématique. Vol. 3. Les Algues bleues et rouges, Les Eugleniens, Peridiniens et Cryptomonadines. Editions N. Boubée & Cie, Paris.

    Google Scholar 

  • Bourrelly, P., 1972. Les Algues D'eau Douce, Initiation à la Systématique. Vol. 1. Les Algues Verts. Editions N. Boubée & Cie, Paris.

    Google Scholar 

  • Brock, T. D., 1976. Halophilic blue-green algae. Arch Mikrobiol. 107: 109–111.

    Google Scholar 

  • Bunt, J. S., 1963. Diatoms of antarctic sea-ice as agents of primary production. Nature, Lond. 199: 1255–1257.

    Google Scholar 

  • Bunt, J. S., Owens, O. van H. & Hoch, G., 1966. Exploratory studies on the physiology and ecology of a psychrophilic marine diatom. J. Phycol. 2: 96–100.

    Google Scholar 

  • Bunt, J. S. & Lee, C. C., 1972. Data on the composition and dark survival of four sea-ice microalgae. Limnol. Oceanogr. 17: 458–461.

    Google Scholar 

  • Burton, H. R., 1980. Methane in a Saline Antarctic lake. In: P. A. Trudinger, M. R. Walter (eds.) Biogeochemistry of Ancient and Modern Environments. Proceedings of the Fourth International Symposium on Environmental Biogeochemistry (ISEB). Australian Academy of Science, Canberra.

    Google Scholar 

  • Cameron, R. E., 1972. Ecology of blue-green algae in Antarctic soils. In: T. V. Desikarachy (ed.) First International Symposium on Taxonomy and Biology of Blue-Green Algae. University of Madras: India, Madras

    Google Scholar 

  • Cameron, R. E., Morelli, F. A. & Randall, L. P., 1972. Aerial, aquatic and soil microbiology of Don Juan Pond, Antarctica. Antarctic J. U.S. 7: 452–258.

    Google Scholar 

  • Campbell, P. J., 1978. Primary productivity of a hypersaline Antarctic lake. Aust. J. Mar. Freshwat. Res. 29: 717–724.

    Google Scholar 

  • Cohen, Y., Krumbein, W. E. & Shilo, M., 1977. Solar Lake (Sinai). 2. Distribution of photosynthetic microorganisms and primary production. Limnol. Oceanogr. 22: 609–620.

    Google Scholar 

  • Corte, A., 1962. Algas de agua dulce en lagos semicongelados de Bahia Esperanza, Peninsula Antartica. Contributiones, Instituto antartico Argentino, 69.

  • Douzou, P., 1977. Cryobiochemistry: An Introduction. Academic Press, New York.

    Google Scholar 

  • Drouet, F., 1973. A brief review of the freshwater algae of Antarctica. Publs natn. Acad. Sci. 839: 10–12.

    Google Scholar 

  • Durbin, E. G., 1974. Studies on the autecology of the marine diatom Thallassiosira nordenskiöldii Cleve. I. The influence of daylength, light intensity and temperature on growth. J. Phycol. 10: 220–225.

    Google Scholar 

  • El-Sayed, S. Z., 1970. Phytoplankton production of the South Pacific and Pacific Sector of the Antarctic. In: W. S. Wooster (ed.) Scientific Exploration of the South Pacific. National academy of Sciences, Washington, D.C.

    Google Scholar 

  • Eppley, R. W., 1972. Temperature and phytoplankton growth in the sea. Fish. Bull. 70: 1063–1085.

    Google Scholar 

  • Farrell, J. & Rose, A. H., 1967. Temperature effects on microorganisms. A. Rev. Microbiol. 21: 101–120.

    Google Scholar 

  • Fogg, G. E., 1977. Aquatic primary production in the Antarctic. Phil. Trans. R. Soc. Lond. Ser. B, 279: 27–38.

    Google Scholar 

  • Fogg, G. E. & Horne, A. J., 1970. The physiology of Antarctic freshwater algae. In: M. W. Holdgate (ed.) Antarctic Ecology. Vol. 2. Academic Press, New York.

    Google Scholar 

  • Fogg, G. E., Nalewajko, C. & Watt, W. D., 1965. Extracellular products of phytoplankton photosynthesis. Proc. R. Soc. Lond. Ser. B, 162: 517–534.

    Google Scholar 

  • Friedman, E. I., 1977. Microorganisms in antarctic desert rocks from dry valleys and Dufek Massif. Antarctic J. U.S. 12: 26–30.

    Google Scholar 

  • Friedman, E. I., 1978. Melting snow in the dry valleys is a source of water for endolithic microorganisms. Antarctic J. U.S. 13: 162–163.

    Google Scholar 

  • Friedman, E. I. & Ocampo, R., 1976. Endolithic algae in the dry valleys: primary producers in the antarctic desert ecosystem. Science, N.Y. 193: 1247–1249.

    Google Scholar 

  • Fukushima, H., 1964. Diatoms vegetation on ice-free area of Cape Royds, Antarctica. Antarctic Record, 22: 1–13.

    Google Scholar 

  • Fukushima, H., 1967. A brief nota on diatom flora of Antarctic inland waters. In: T. Nagata (ed.) Proceedings of the Symposium on Pacific-Antarctic Sciences. Eleventh Pacific Science Congress, Tokyo.

  • Fukushima, H., 1968. Algal vegetation of the Kasumi Rock ice-free area, Prince Olav Coast, Antarctica. Antarctic Record, 31: 73–86.

    Google Scholar 

  • Fukushima, H., 1969. Diatom vegetation near McMurdo station, Ross Island Antarctica. Antarctic Record, 34: 74–78.

    Google Scholar 

  • Goldman, C. R., 1963. The measurement of primary productivity and limiting factors in freshwater with carbon-14. In: M. S. Doty (ed.) Conference on Primary Productivity Measurement — Marine and Freshwater. University of Hawaii, 1961. U.S. Atomic Energy Commission.

  • Goldman, C. R., 1964. Primary productivity studies in Antarctic lakes. In: R. Carrick, M. W. Holdgate & J. Prevost (eds.) Biologie Antarctique. Hermann, Paris.

    Google Scholar 

  • Goldman, C. R., Mason, D. T. & Hobbie, J. E., 1967. Two Antarctic desert lakes. Limnol. Oceanogr. 12: 295–310.

    Google Scholar 

  • Goldman, C. R., Mason, D. T. & Wood, B. J. B. 1963. Light injury and inhibition in Antarctic freshwater phytoplankton. Limnol. Oceanogr. 8: 313–322.

    Google Scholar 

  • Goldman, C. R., Mason, D. T. & Wood, B. J. B., 1972 Comparative study of the limnology of two small lakes on Ross Island, Antarctica. In: G. A. Llano (ed.) Antarctic Terrestrial Biology. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Goto, S., Sugiyama, J. & Iizuka, H., 1969. A taxonomic study of Antarctic yeasts. Mycologia, 61: 748–774.

    Google Scholar 

  • Hand, R. M., 1980. Bacterial populations of two saline Antarctic lakes. In: P. A. Trudinger, M. R. Walter (eds.). Biogeochemistry of Ancient and Modern Environments. Proceedings of the Fourth International Symposium on Environmental Biogeochemistry (ISEB). Australian Academy of Science, Canberra.

    Google Scholar 

  • Hand, R. M. & Burton, H. R., 1981. Microbial ecology of an Antarctic saline meromictic lake. In: W. D. Williams (ed.) Salt Lakes: Proceedings of an International Symposium on Athalassic (Inland) Salt Lakes. Junk, The Hague.

    Google Scholar 

  • Harding, J. P., 1941. Lower Crustacea. Sci. Rep. Brit. Graham Land Exped., 1934–1937, 1: 319–322.

    Google Scholar 

  • Harris, H. J. H., Cartwright, K. & Torii, T., 1979. Dynamic chemical equilibrium in a polar desert pond: a sensitive index of meterological cycles. Science, N.Y. 204: 301–303.

    Google Scholar 

  • Hellebust, J. A., 1965. Excretion of some organic compounds by marine phytoplankton. Limnol. Oceanogr. 10: 192–206.

    Google Scholar 

  • Herbert, R. A. & Bell, C. R., 1973. Nutrient cycling in freshwater lakes on Signy Island, South Orkney Islands. Br. Antarct. Surv. Bull. 37: 15–20.

    Google Scholar 

  • Heywood, R. B., 1972. Antarctic limnology: A review. Br. Antarct. Surv. Bull. 29: 35–65.

    Google Scholar 

  • Heywood, R. B., 1977a. Antarctic freshwater ecosystems: review and synthesis. In: G. A. Llano (ed.) Adaptations within Antarctic Ecosystems. Smithsonian Institution, Washington, D.C.

    Google Scholar 

  • Heywood, R. B., 1977b. A limnological survey of the Ablation Point area, Alexander Island, Antarctica. Phil. Trans. R. Soc. Lond. Ser. B, 279: 39–54.

    Google Scholar 

  • Higa, A. & Cazzulo, J. J., 1975. Some properties of the citrate synthase from the extreme halophile, Halobacterium cutirubrum. Biochem. J. 147: 267–274.

    Google Scholar 

  • Hindak, F. & Komarek, J., 1968. Cultivation of the cryosestonic alga, Koliella tatrae (Kol) Hind. Biol. Planta, 10: 95–97.

    Google Scholar 

  • Hirano, M., 1965. In: P. van Oye and J. van Mieghem (eds.) Biogeography and Ecology in Antarctica. Junk, The Hague.

    Google Scholar 

  • Holdgate, M. W., 1977. Terrestrial ecosystems in the Antarctic. Phil. Trans. R. Soc. Lond. Ser. B, 279: 5–25.

    Google Scholar 

  • Holm-Hansen, O., 1964. Isolation and culture of terrestrial and fresh-water algae of Antarctica. Phycologia, 4: 43–51.

    Google Scholar 

  • Horner, R. & Alexander, V., 1972. Algal populations in arctic sea-ice: an investigation of heterotrophy. Limnol. Oceanogr. 17: 454–458.

    Google Scholar 

  • Horowitz, N.H., Cameron, R. E. & Hubbard, J. S., 1972. Microbiology of the Dry Valleys of Antarctica. Science, N.Y. 176: 242–245.

    Google Scholar 

  • Inniss, W. E. & Ingraham, J. L., 1978. Microbial life at low temperatures: mechanisms and molecular aspects. In: D. J. Kushner (ed.) Microbial Life in Extreme Environments. Academic Press, New York.

    Google Scholar 

  • Inoue, K., 1976. Quantitative ecology of microorganisms at Syowa station in Antarctica and isolation of psychrophiles. J. gen. Appl. Microbiol. 22: 143–150.

    Google Scholar 

  • Inoue, K. & Kamagata, K., 1976. Taxonomic study on obligately psychrophilic bacteria isolated from Antarctica. J. gen. Appl. Microbiol. 22: 165–176.

    Google Scholar 

  • Ito, K. & Fukuchi, M., 1978. Harpacticus furcatus Lang from the Antarctic Peninsula, with reference to the copepodid stages (Copepoda: Harpacticoida). Antarctic Record, 61, 40–64.

    Google Scholar 

  • Jørgensen, E. G., 1968. The adaptation of marine algae. II. Aspects of the temperature adaptation of Skeletonema costatum. Physiologia Pl. 21: 423–427.

    Google Scholar 

  • Johnson, R. M., Madden, J. M. & Swafford, J. R., 1978. Taxonomy of Antarctic bacteria from soils and air primarily of the McMurdo station and Victoria Land dry valleys region. In: Antarctic Research Series 30, Terrestrial Biology III. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Kalff, J., Welch, H. E. & Holmgren, S. K., 1972. Pigment cycles in two high-arctic Canadian lakes. Verh. Inter. Ver. Limnol. 18: 250–256.

    Google Scholar 

  • Kao, O. H. W., Burns, D. S. & Town, W. R., 1973. The characterization of c-phycocyanin from an extremely halotolerant blue-green alga, Coccochloris elabens. Biochem. J. 131: 39–50.

    Google Scholar 

  • Karasawa, S. & Fukushima, H., 1977. Diatom flora and environmental factors in some freshwater ponds of East Ongul Island. Antarctic Record, 59: 46–53.

    Google Scholar 

  • Kerry, K. R., Grace, D. R., Williams, R. & Burton, H. R., 1977. Studies on some saline lakes of the Vestfold Hills, Antarctica. In: G. A. Llano (ed.) Adaptations within Antarctic Ecosystems. Smithsonian Institution, Washington, D.C.

    Google Scholar 

  • Kol, E., 1970. Algae from the soil of the Antarctic. Acta Bot. Acad. Sci. Hung. 16: 313–319.

    Google Scholar 

  • Koob, D. D. & Leister, G. L., 1972. Primary productivity and associated physical, chemical, and biological characteristics of Lake Bonney: a perennially ice covered lake in Antarctica. In: G. A. Llano (ed.) Antarctic Terrestrial Biology. American Geophysical Union, Washington, D.C.

    Google Scholar 

  • Korotkevich, V. S., 1958. [Animal population of oasis lakes in East Antarctica.] Inform. Byul. Sov. Antarkt. Eksp. 3: 91–98. [In Russian: English translation 1: (1964): 154–161].

    Google Scholar 

  • Kriss, A. E., Mitskevich, I. N., Rozanova, E. P. & Osnitskaya, L. K., 1976. Microbiological investigations of Lake Vanda (Antarctica). Microbiology, 45: 917–922. [Translated from Mikrobiologiya, 45: 1075–1081].

    Google Scholar 

  • Kruchinin, Y. A. & Simonov, I. M., 1967. [New type of Antarctic lake]. Inform. Byul. Sov. Antarkt. Eksp. 66: 12–17. [In Russian: English translation 6: (1968): 552–555].

    Google Scholar 

  • Kushner, D. J., 1978. Life in high salt and solute concentrations: halophilic bacteria. In: D. J. Kushner (ed.) Microbial Life in Extreme Environments. Academic Press, New York.

    Google Scholar 

  • Lanyi, J. K., 1974. Salt dependent properties of proteins from extremely halophilic bacteria. Bact. Rev. 38: 272–290.

    Google Scholar 

  • Likens, G. E., 1964. An unusual distribution of algae in an Antarctic lake. Bull. Torrey bot. Club, 91: 213–217.

    Google Scholar 

  • Llano, G. A. (ed.), 1977. Adaptations within Antarctic Ecosystems. Proceedings of the Third Symposium on Antarctic Biology. Smithsonian Institution, Washington, D.C.

    Google Scholar 

  • Markov, K. K., Bardin, V. I., Lebedev, V. L., Orlov, A. I. & Suetova, I. A., 1968. Geografiya Antarktidy. Izdatel'stvo ‘Mysl’. Moscow. [The Geography of Antarctica. Translated from the Russian for the National Science Foundation, Washington D.C., by the Israel Program for Scientific Translations, Jerusalem, 1970].

    Google Scholar 

  • Marre, E., 1962. Temperature. In: R. A. Lewin (ed.) Physiology and Biochemistry of Algae. Academic Press, New York.

    Google Scholar 

  • Matheson, A. T., Sprott, G. D., McDonald, I. J. & Tessier, H., 1976. Some properties of an unidentified halophile: growth characteristics, internal salt concentrations, and morphology. Can. J. Microbiol. 22: 780–786.

    Google Scholar 

  • Meyer, G. H., Morrow, M. B., Wyss, O., Berg, T. E. & Littlepage, J., 1962. Antarctica: the microbiology of an unfrozen saline pond. Science, N.Y. 138: 1103–1104.

    Google Scholar 

  • Miller, D. M., Jones, J. H., Yopp, J. H., Tindall, D. R. & Schmid, W. E., 1976. Ion metabolism in a halophilic blue-green alga, Aphanothece halophytica. Arch. Mikrobiol. 111: 145–149.

    Google Scholar 

  • Morita, R. Y., 1975. Psychrophilic bacteria. Bact. Rev. 39: 144–167.

    Google Scholar 

  • Morris, I. & Farrell, K., 1971. Photosynthetic rates, gross patterns of carbon dioxide assimilation and activities of ribulose diphosphate carboxylase in marine algae grown at different temperatures. Physiologia Pl. 25: 372–377.

    Google Scholar 

  • Morris, I. & Glover, H. E., 1974. Questions on the mechanism of temperature adaptation in marine phytoplankton. Mar. Biol. 24: 147–154.

    Google Scholar 

  • Murray, J., 1910. Antarctic Rotifera. In: J. Murray (ed.) British Antarctic Expedition, 1907–1909: Reports on the Scientific Investigations; Biology, Vol. 1 (Pt III): 41–73. Heinemann, London.

    Google Scholar 

  • Nielsen, A. H. & Lewin, R. A., 1974. The uptake and utilization of organic carbon by algae: an essay in comparative biochemistry. Phycologia, 13: 227–264.

    Google Scholar 

  • Norberg, P., Kaplan, J. G. & Kushner, D. J., 1973. Kinetics and regulation of the salt dependent aspartate transcarbamylase of Halobacterium cutirubrum. J. Bact. 113: 680–686.

    Google Scholar 

  • Parker, B. C., Koehn, R. C., Paterson, R. A., Craft, J. A., Lane, L. S., Stavros, R. W., Sugg, H. G. Jr., Whitehurst, J. T., Fortner, R. D. & Weand, B. L., 1977. Changes in dissolved organic matter, photosynthetic production, and microbial community composition in Lake Bonney, Southern Victoria Land, Antarctica. In: G. A. Llano (ed.) Adaptations within Antarctic Ecosystems. Smithsonian Institution, Washington, D.C.

    Google Scholar 

  • Prescott, G. W., 1979. A Contribution to a Bibliography of Antarctic and Subantarctic Algae. Cramer, Vaduz.

    Google Scholar 

  • Rodhe, W., 1955. Can plankton production proceed during winter darkness in subarctic lakes? Verh. Int. Ver. Limnol. 12: 117–122.

    Google Scholar 

  • Rodhe, W., Hobbie, J. E. & Wright, R. T., 1966. Phototrophy and heterotrophy in high mountain lakes. Verh. Int. Ver. Limnol. 16: 302–313.

    Google Scholar 

  • Ryther, J. H. & Guillard, R. R. L., 1962. Studies on marine planktonic diatoms. III. Some effects of temperature on respitation of five species. Can. J. Microbiol. 8: 447–453.

    Google Scholar 

  • Samsel, G. A. Jr. & Parker, B. C., 1972. Limnological investigations in the area of Anvers Island, Antarctica. Hydrobiologia, 40: 505–511.

    Google Scholar 

  • Siegel, B. Z., McMurty, G., Siegel, S. M., Chen, J. & La Rock, P., 1979. Life in the calcium chloride environment of Don Juan Pond, Antarctica. Nature, Lond. 280: 828–829.

    Google Scholar 

  • Smayda, T. J., 1969. Experimental observations on the influence of temperature, light, and salinity on cell division of the marine diatom, Detonula confervacea (Cleve) Gran. J. Phycol. 5: 150–157.

    Google Scholar 

  • Smayda, T. J. & Mitchell-Innes, B., 1974. Dark survival of autotrophic, planktonic marine diatoms. Mar. Biol. 25: 195–202.

    Google Scholar 

  • Smith, W. O., 1974. The extracellular release of glycollic acid by a marine diatom. J. Phycol. 10: 30–33.

    Google Scholar 

  • Soeder, C. & Stengel, E., 1974. Physico-chemical factors affecting metabolism and growth rate. In: W. P. D. Stewart (ed.) Algal Physiology and Biochemistry. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Spurr, B., 1975. Limnology of Bird Pond, Ross Island, Antarctica. N.Z. J. Mar. Freshwat. Res. 9: 547–562.

    Google Scholar 

  • Stanley, S. O. & Rose, A. H., 1967. Bacteria and yeasts from lakes on Deception Island. Proc. R. Soc. B, 252: 199–207.

    Google Scholar 

  • Steemann Nielsen, E. & Hansen, V. K., 1959. Light Adaptation in marine phytoplankton populations and its interrelation with temperature. Physiologia Pl. 12: 353–370.

    Google Scholar 

  • Steemann Nielsen, E. & Jørgensen, E. G., 1968a. The adaptation of plankton algae. I. General part. Physiol. Pl. 21: 401–413.

    Google Scholar 

  • Steemann Nielsen, E. & Jørgensen, E. G., 1968b. The adaptation of plankton algae. III. With special consideration of the importance in nature. Physiologia Pl. 21: 647–654.

    Google Scholar 

  • Stewart, W. P. D., 1973. In: N. G. Carr and B. A. Whitton (eds.) The Biology of Blue-Green Algae. Blackwell Scientific Publications, Oxford.

    Google Scholar 

  • Sudzuki, M., 1979. On the microfauna of the Antarctic region. III. Microbiota of the terrestrial interstices. Mem. Nat. Inst. Polar Res., Special Issue No. 11: 104–126.

  • Talling, J. F., 1955. The relative growth rates of three plankton diatoms in relation to underwater radiation and temperature. Ann. Bot. 19: 329–341.

    Google Scholar 

  • Tamiya, H., Sasa, T., Nihei, T. & Ishibashi, S., 1955. Effect of variation of daylength, day and night-temperatures, and intensity of daylight upon the growth of Chlorella. J. gen. Appl. Microbiol. 1: 298–307.

    Google Scholar 

  • Thomas, C. Q., 1965. On populations in Antarctic meltwater pools. Pacific Sci. 19: 515–521.

    Google Scholar 

  • Thompson, G. H. & Nelson, K. H., 1956. Concentration of brines and deposition of salts from seawater under frigid conditions. Am. J. Sci. 254: 227–238.

    Google Scholar 

  • Tominaga, H., 1977. Photosynthetic nature and primary productivity of Antarctic freshwater phytoplankton. Jap. J. Limnol. 38: 122–130.

    Google Scholar 

  • Torii, T., Yamagata, N., Nakaya, S., Murata, S., Hashimoto, T., Matsubaya, O. & Sakari, H., 1975. Geochemical aspects of McMurdo saline lakes with special emphasis of the distribution of nutrient matters. Mem. Nat. Inst. Polar Res., Special Issue No. 4: 5–29.

  • Vialov, O. S. & Sdobnikova, N. W., 1961. Sweet-water algae of Antarctica. Acta Soc. Bot. Pol. 30: 766–773.

    Google Scholar 

  • Waguri, O., 1976. Isolation of microorganisms from salt lakes in the Dry Valley, Antarctica, and their living environment. Antarct. Rec. 57: 80–96.

    Google Scholar 

  • Waguri, O., Kawamura, Y. & Tubaki, K., 1975. Isolation of microorganisms. In: M. G. Mudrey Jr. and L. D. McGinnis (eds.) Dry Valley Drilling Project, Bulletin No. 5: 111–117. Dry Valley Drilling Project, Department of Geology, Northern Illinois University, De Kalb, Illinois.

    Google Scholar 

  • Watanuki, T. & Ohno, M., 1975. Cultivation of Antarctic microalgae (2). Isolation of Antarctic diatom Achnanthes brevipes var. intermedia from the bottom sand of the salt lakes at Skarvs Nes in Lützow-Holm Bay, Antarctica. Antarctic Record 54: 94–100.

    Google Scholar 

  • Watanuki, T. & Ohno, M., 1976. Cultivation of Antarctic microalgae (3). Isolation and culture of Antarctic endemic diatom Tropidoneis laevissima W. & G. S. West from the bottom sand of the salt lake Suribati at Skarvs Nes in Lützow-Holm Bay Antarctica. Antarctic Record 56: 33–36.

    Google Scholar 

  • Watt, W. D., 1966. Release of dissolved organic material from the cells of phytoplankton populations. Proc. Roy. Soc. Lond. Ser. B, 164: 521–551.

    Google Scholar 

  • Weand, B. L., Hoehn, R. C. & Parker, B. C., 1976. Trace element distribution in an Antarctic meromictic Lake. Hydrobiol. Bull. 10: 104–114.

    Google Scholar 

  • West, W. & West, G. S., 1910. Freshwater algae. In: J. Murray (ed.) British Antarctic Expedition, 1907–1909: Reports on the Scientific Investigations; Biology, Vol. 1 (Pt. VIII): 263–298. Heinemann, London.

    Google Scholar 

  • Whitman, C. M., Hoehn, R. C., Krutchkoff, R. G. & Parker, B. C., 1977. Mathematical models of benthic and plankton communities in Lake Bonney, South Victoria Land, Antarctic. In: G. A. Llano (ed.) Adaptations within Antarctic Ecosystems. Smithsonian Institution, Washington, D.C.

    Google Scholar 

  • Wilce, R. T., 1967. Heterotrophy in arctic sublittoral seaweeds: an hypothesis. Bot. Mar. 10: 185–197.

    Google Scholar 

  • Williams, R., 1979. Phytoplankton populations in an Antarctic saline lake. M.Sc. thesis, University of Melbourne.

  • Willoughby, L. G., 1971. Aquatic fungi from an Antarctic island and a tropical lake. Nova Hedwigia, 22: 469–488.

    Google Scholar 

  • Wright, R. T., 1964. Dynamics of a phytoplankton community in an ice-covered lake. Limnol. Oceanogr. 9: 163–178.

    Google Scholar 

  • Wright, R. T. & Hobbie, J. E., 1966. Use of glucose and acetate by bacteria and algae in aquatic ecosystems. Ecology, 47: 447–464.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Wright, S.W., Burton, H.R. 23. The biology of Antarctic saline lakes. Hydrobiologia 81, 319–338 (1981). https://doi.org/10.1007/BF00048723

Download citation

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00048723

Keywords

Navigation