Skip to main content
Log in

Effects of ambient ion concentrations on gill ATPases in fresh water eel,Anguilla anguilla

  • Published:
Fish Physiology and Biochemistry Aims and scope Submit manuscript

Abstract

Branchial activities of Na+,K+-ATPase (ouabain sensitive), Mg2+ ATPase (ouabain insensitive) and kinetic analysis of high and low affinity Ca2+ ATPase were measured inAnguilla anguilla that had been acclimated to demineralized water (DW, Ca < 10 μM), freshwater (FW, Ca = 2 mM), and Low calcium freshwater (L-Ca, Ca = 0.9 mM). Na+,K+-ATPase activity decreased while ouabain insensitive activity increased when ambient Ca2+ decreased. Two kinetic forms of Ca2+ ATPase could be resolved in each environmental condition. The stimulation coefficients of both sites or enzymes were not affected by ambient Ca2+ concentrations. The maximal velocity of both the high and the low affinity Ca2+ ATPase was increased when external Ca2+ was decreased during acclimation. The low affinity Ca2+ ATPase and the Mg2+ stimulated enzyme could be a non specific enzyme accepting either Ca2+ or Mg2+. Results are compared with previous results in the literature and in relation to the branchial morphology and ionic exchanges in fish.

This is a preview of subscription content, log in via an institution to check access.

Access this article

Price excludes VAT (USA)
Tax calculation will be finalised during checkout.

Instant access to the full article PDF.

Similar content being viewed by others

References cited

  • Avella, M., Masoni, A., Bornancin, M. and Mayer-Gostan N. 1987. Gill morphology and sodium influx in the rainbow trout (Salmo gairdneri) acclimated to artificial freshwater environments. J. Exp. Zool. 19: 159–169.

    Google Scholar 

  • Borgatti, A.R., Trigari, G., Pagliarani, A. and Ventrella, V. 1985. Ouabain-insensitive Na+ stimulation of a microsomal Mg2+-ATPase in gills of sea bass (Dicentrarchus labrax). Comp. Biochem. Physiol. 81A: 127–135.

    Google Scholar 

  • Bornancin, M. and De Renzis, G. 1976. A sensitive automated method for adenosine triphosphatase kinetics. Anal. Biochem. 75: 374–381.

    Google Scholar 

  • Burdick, C.J., Mendlinger, S., Pang, R. and Pang, P.K.T. 1976. Effects of environmental calcium and Stannius corpuscle extracts on Ca-ATPase in killfish,Fundulus heteroclitus. Am. Zool. 16: 224.

    Google Scholar 

  • Butler, D.G. and Carmichael, F.J. 1972. (Na+-K+)-ATPase activity in eel (Anguilla rostrata) gills in relation to changes in environmental salinity: Role of adrenocortical steroids. Gen. Comp. Endocrinol. 19: 421–427.

    Google Scholar 

  • Chan, D.K.O., Chester Jones, I., Henderson, I.W. and Rankin, J.C. 1967. Studies on the experimental alteration of water and electrolyte. J. Endocrinol. 37: 297–317.

    Google Scholar 

  • Chen, P.S., Toribara, T.Y. and Warner, H. 1956. Microdetermination of phosphorous. Anal. Chem. 26: 1756–1758.

    Google Scholar 

  • Cuthbert, A. and Maetz, J. 1972. The effects of calcium and magnesium on sodium fluxes through gills ofCarassius auratus, L. J. Physiol. 221: 633–643.

    Google Scholar 

  • De Renzis, G. and Bornancin, M. 1984. Ion transport and gill ATPases.In Fish Physiology. Vol XB, pp. 65–104. Edited by W.S. Hoar and D.J. Randall. Academic Press, New York.

    Google Scholar 

  • Doneen, B.A. 1981. Effects of adaptation to sea water, 170% sea water and to freshwater on activities and subcellar distribution of branchial Na+-K+-ATPase, low and high affinity Ca+-ATPase, and ouabain-insensitive ATPase inGillichthys mirabilis. J. Comp. Physiol. 145: 51–61.

    Google Scholar 

  • Fenwick, J.C. 1979. Ca2+-activated adenosine triphosphatase activity in the gill of freshwater and seawater-adapted eels (Anguilla anguilla). Comp. Biochem. Physiol. 62B: 67–70.

    Google Scholar 

  • Flik, G., Wendelaar Bonga, S.E. and Fenwick, J.C. 1983. Ca2+-dependent phosphatase and Ca2+-dependent ATPase activities in plasma membranes of eel gill epithelium. I. Identification of Ca2+-activated ATPase activities with nonspecific phosphatase activities. Comp. Biochem. Physiol. 76B: 745–754.

    Google Scholar 

  • Flik, G., Wendelaar Bonga, S.E. and Fenwick, J.C. 1984. Ca2+-dependent phosphatase and Ca2+-dependent ATPase activities in plasma membranes of eel gill epithelium. II. Evidence for transport high-affinity Ca2+-ATPase. Comp. Biochem. Physiol. 79B: 9–16.

    Google Scholar 

  • Flik, G., Wendelaar Bonga, S.E. and Fenwick, J.C. 1984. Ca2+-dependent phosphatase and Ca2+-dependent ATPase activities in plasma membranes of eel gill epithelium. III. Stimulation of branchial high affinity Ca2+-ATPase during prolactin induced hypercalcemia. Comp. Biochem. Physiol. 79B: 521–524.

    Google Scholar 

  • Flik, G., Wendelaar Bonga, S.E. and Fenwick, J.C. 1985. Active Ca2+ transport in plasma membranes of branchial epithelium of the north-American eel,Anguilla rostrata LeSueur. Biol. Cell 55: 265–272.

    Google Scholar 

  • Flik, G., Fenwick, J.C., Kolar, Z., Mayer-Gostan, N. and Wendelaar Bonga, S.E. 1986. Effects of ovine prolactin on calcium uptake and distribution in the freshwater cichlid teleost fish,Oreochromis mossambicus. Am. J. Physiol. 250: R161–R166.

    Google Scholar 

  • Flik, G. and Perry, S.F. 1989. Cortisol stimulates whole body calcium uptake and the branchial calcium pump in freshwater rainbow trout. J. Endocrinol. 120: 17–82.

    Google Scholar 

  • Ho, S.M. and Chan, D.K.O. 1980. Branchial ATPases and ionic transport in the eelAnguilla japonica-II. Ca2+-ATPase. Comp. Biochem. Physiol. 67B: 639–645.

    Google Scholar 

  • Hanssen, R.G.J.M., Lafeber, F.P.J.G., Flik, G. and Wendelaar Bonga, S. 1989. Ionic and total calcium levels in the blood of european eel (anguilla anguilla): effects of stanniectomy and hypocalcin replacement therapy. J. Exp. Biol. 141: 177–186.

    Google Scholar 

  • Hobe, H., Laurent, P. and McMahon, B.R. 1984. Whole body calcium flux rates ion freshwater teleosts as a function of ambient calcium and pH levels: a comparison between the euryhaline trout,Salmo gairdneri and stenohaline bullhead,Ictalurus nebulosus. J. Exp. Biol. 113: 237–252.

    Google Scholar 

  • Hunn, J.B. 1985. Role of calcium in gill function in freshwater fishes. Comp. Biochem. Physiol. 82A: 543–547.

    Google Scholar 

  • Ichii, T. and Mugiya, Y. 1983. Effects of a diatary deficiency in calcium on growth and calcium uptake from the aquatic environment in the goldfish,Carassius auratus. Comp. Biochem. Physiol. 74A: 259–262.

    Google Scholar 

  • Ishihara, A. and Mugiya, Y. 1987. Ultrastructural evidence of calcium uptake by chloride cells in the gills of goldfish,Carassius auratus. J. Exp. Zool. 242: 121–129.

    Google Scholar 

  • Laurent, P. and Dunel, S. 1980. Morphology of gill epithelia in fish. Am. J. Physiol. 7: R147–159.

    Google Scholar 

  • Laurent, P., Höbe, H. and Dunel-Erb, S. 1985. The role of environmental sodium chloride relative to calcium in gill morphology of freshwater salmonoid fish. Cell Tiss. Res. 240: 675–692.

    Google Scholar 

  • Leino, R.L., McCornick, J.H. and Jensen, K.M. 1987. Changes in gill morphology of fathead minnows and yellow perch transferred to soft water or acidified soft water with particular reference to chloride cells. Cell Tiss. Res. 250: 389–399.

    Google Scholar 

  • Lowey, O.H.N., Rosebrough, W.J., Farr, A.L. and Randall, R.J. 1951. Protein measurement with Folin phenol reagent. J. Biol. Chem. 193: 265–275.

    Google Scholar 

  • Ma, S.W.Y., Shami, Y., Messer, H.H. and Copp, D.H. 1974. Properties of Ca2+-ATPase from the gill of rainbow trout (Salmo gairdneri). Biochim. Biophys. Acta. 345: 243–251.

    Google Scholar 

  • Maetz, J. 1974. Aspects of adaptation to hypo-osmotic and hyper-osmotic environments.In Biochemical and Biophysical Perspectives in Marine Biology. Vol. 1, pp. 1–167. Edited by D.C. Malin and J.R. Sargent. Academic Press, London.

    Google Scholar 

  • Masoni, A., Isaïa, J., Sola, F. and Bornancin, M. 1984. Adaptation deSalmo gairdneri à des milieux faiblement ionisés: conséquences sur la morphologie et la physiologie de l'épithélium branchial. Ichtyophysiol. Acta 8: 98–114.

    Google Scholar 

  • Mayer-Gostan, N., Bornancin, M., De Renzis, G., Naon, R., Yee, J.A., Shew, R.L. and Pang, P.K.T. 1983. Extraintestinal calcium uptake in the killfish,Fundulus heteroclitus. J. Exp. Zool. 227: 329–338.

    Google Scholar 

  • Mayer-Gostan, N. and Hirano, T. 1976. The effects of transecting the IXth and Xth cranial nerves on hydromineral balance in the eel,Anguilla anguilla. J. Exp. Biol. 64: 461–475.

    Google Scholar 

  • Mc Donald, D.G. and Rogano, M.S. 1986. Ion regulation by rainbow trout,Salmo gairdneri, in ion-poor water. Physiol. Zool. 59: 318–331.

    Google Scholar 

  • Naon, R. and Mayer-Gostan, N. 1989. Ca2+-stimulated AT-Pase activities in the gill of the eel: interactions of Mg2+ ions. Am. T. Physiol. 256: R313–R322.

    Google Scholar 

  • Nieminen, M., Korhonen, I. and Laitinen, M. 1982.

    Google Scholar 

  • Olivereau, M. and Olivereau, J. 1982. Calcium-sensitive cells of the pars intermedia and osmotic balance in the eel. Cell. Tiss. Res. 222: 231–241.

    Google Scholar 

  • Olivereau, M, Olivereau, J.M. and Aimar, C. 1982. Influence of deionized water supplemented or not with different ions on prolactin cell activity and osmotic regulation in the goldfish. Comp. Biochem. Physiol. 71: 11–16.

    Google Scholar 

  • Pang, P.K.T., Griffith, R.W., Maetz, J. and Pic, P. 1980. Calcium uptake in fishes.In Epithelial Transport in the Lower Vertebrates. pp. 121–132. Edited by B. Lahlou. Cambridge Univ. Press, Cambridge.

    Google Scholar 

  • Parker, D.B.B., McKeown, B.A. and MacDonald, J.S. 1985. The effect of pH and/or calcium enriched freshwater on gill Ca2+-ATPase activity and osmotic water inflow in rainbow trout (Salmo gairdneri). Comp. Biochem. Physiol. 81A: 149–156.

    Google Scholar 

  • Part, P. and Lock, R.A.C. 1983. Diffusion of calcium, cadmium, and mercury in a mucous solution from rainbow trout. Comp. Biochem. Physiol. 76C: 254–263.

    Google Scholar 

  • Payan, P., Mayer-Gostan, N. and Pang, P.K.T. 1981. Site of calcium uptake in the fresh water trout gill. J. Exp. Zool. 216: 346–347.

    Google Scholar 

  • Perry, S.F. and Wood, C.M. 1985. Kinetics of branchial calcium uptake in the rainbow trout: Effects of acclimation to various external calcium levels. J. Exp. Biol. 116: 411–434.

    Google Scholar 

  • Perry, S.F. and Laurent, P. 1989. Adaptational responses of rainbow trout to lowered external NaCl concentration: contribution of the branchial chloride cell. J. Exp. Biol. 147: 147–168.

    Google Scholar 

  • Pfeiler, E. 1978. Na-ATPase and NaK-ATPase activities in gills of rainbow trout (Salmo gairdneri). J. Comp. Physiol. 124: 97–104.

    Google Scholar 

  • Pisam, M., Caroff, A. and Rambourg, A. 1987. Two types of chloride cells in the gill epithelium of a fresh water adapted euryhaline fish:Lepistes reticulatus; their modifications during salt adaptation. Am. J. Anat. 179: 40–50.

    Google Scholar 

  • Scharff, O. 1979. Comparison between measured and calculated concentrations of calcium ions in buffers. Anal. Chim. Acta. 109: 291–305.

    Google Scholar 

  • Shephard, K.L. 1981. The activity and characteristics of the Ca2+ ATPase of fish gills in relation to environmental calcium concentrations. J. Exp. Biol. 90: 115–121.

    Google Scholar 

  • Thomas, S., Fievet, B., Claireaux, G. and Motais, R. 1988. Adaptative respiratory responses of trout to acute hypoxia. I. Effects of water ionic composition on blood acid-base status response and gill morphology. Respir. Physiol. 74: 77–90.

    Google Scholar 

  • Wendelaar Bonga, S.E., Flik, G., Lowik, C.W. and Van Eys, G.J. 1985. Environmental control of prolactin secretion in teleost fishOreochromis mossambicus. Gen. Comp. Endocrinol. 57: 352–359.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

About this article

Cite this article

Mayer-Gostan, N., Naon, R. Effects of ambient ion concentrations on gill ATPases in fresh water eel,Anguilla anguilla . Fish Physiol Biochem 10, 75–89 (1992). https://doi.org/10.1007/BF00004656

Download citation

  • Accepted:

  • Issue Date:

  • DOI: https://doi.org/10.1007/BF00004656

Keywords

Navigation