Skip to main content

The Statistical Mechanics of Solution-Phase Nucleation: CaCO\(_3\) Revisited

  • Conference paper
  • First Online:
Foundations of Molecular Modeling and Simulation

Abstract

Providing a molecular level description of amorphous CaCO\(_3\) nucleation in aqueous solutions necessitates the use of theory and simulation in addition to a direct connection to experiments. Furthermore, the ability to simulate experimental conditions relevant to nucleation requires a systematic reduction in the complexity of a molecular-based model that can be compared to experimental observations and tested for self-consistency. In this review, we further expand on the theoretical details described in (Henzler et al. Sci Adv 4:eaa06283, (2018)), where a molecular-based solution model was constructed based on a solvent-mediated quantum mechanical potential of mean force for Ca\(^{2+}\) and CO\(_3^{2-}\) ion pairing. The statistical mechanics and simulation approaches for solution-phase nucleation are presented and connected to the various CaCO\(_3\) polymorph chemical potentials and interfacial surface energies. The resulting theory presented herein is general and is shown to accurately describe the initial stages of amorphous calcium carbonate nucleation.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Anwar J, Zahn D (2011) Uncovering molecular processes in crystal nucleation and growth by using molecular simulation. Angew Chem Int Ed 50:1996–2013

    Article  CAS  Google Scholar 

  2. Kathmann SM, Schenter GK, Garrett BC, Chen B, Siepmann JI (2009) Thermodynamics and kinetics of nanoclusters controlling gas-to-particle nucleation. J Phys Chem C 113:10354–10370

    Article  CAS  Google Scholar 

  3. Gebauer D, Kellermeier M, Gale JD, Bergström L, Cölfen H (2014) Pre-nucleation clusters as solute precursors in crystallisation. Chem Soc Rev 43:2348–2371

    Article  CAS  Google Scholar 

  4. Smeets PJM, Finney AR, Habraken WJEM, Nudelman F, Friedrich H, Laven J, De Yoreo JJ, Rodger PM, Sommerdijk NAJM (2017) A classical view on nonclassical nucleation. Proc Natl Acad Sci 114:E7882–E7890

    Article  CAS  Google Scholar 

  5. Keasler SJ, Kim H, Chen B (2012) Sign preference in ion-induced nucleation: Contributions to the free energy barrier. J Chem Phys 137:174308

    Article  Google Scholar 

  6. Oh K, Gao G, Zeng X (2001) Nucleation of water and methanol droplets on cations and anions: the sign preference. Phys Rev Lett 86:5080–5083

    Article  CAS  Google Scholar 

  7. Chen B, Siepmann JI (2000) A novel Monte Carlo algorithm for simulating strongly associating fluids: applications to water, hydrogen fluoride, and acetic acid. J Phys Chem B 104:8725–8734

    Article  CAS  Google Scholar 

  8. McGrath MJ, Ghogomu JN, Mundy CJ, Kuo IFW, Siepmann JI (2010) First principles Monte Carlo simulations of aggregation in the vapor phase of hydrogen fluoride. Phys Chem Chem Phys 12:7678–7687

    Article  CAS  Google Scholar 

  9. Harwood DB, Peters CJ, Siepmann JI (2016) A Monte Carlo simulation study of the liquid-liquid equilibria for binary dodecane/ethanol and ternary dodecane/ethanol/water mixtures. Fluid Phase Equil 407:269–279

    Article  CAS  Google Scholar 

  10. Stubbs JM, Siepmann JI (2002) Aggregation in dilute solutions of 1-hexanol in n-hexane: a Monte Carlo simulation study. J Phys Chem B 106:3968–3978

    Article  CAS  Google Scholar 

  11. Stubbs JM, Siepmann JI (2004) Binary phase behavior and aggregation of dilute methanol in supercritical carbon dioxide: a Monte Carlo simulation study. J Chem Phys 121:1525–1534

    Article  CAS  Google Scholar 

  12. Demichelis R, Raiteri P, Gale JD, Quigley D, Gebauer D (2011) Stable prenucleation mineral clusters are liquid-like ionic polymers. Nat Commun 2:590

    Article  Google Scholar 

  13. Gebauer D, Völkel A, Cölfen H (2008) Stable prenucleation calcium carbonate clusters. Science 322:1819–1822

    Article  CAS  Google Scholar 

  14. Jiang H, Debenedetti PG, Panagiotopoulos AZ (2019) Nucleation in aqueous NaCl solutions shifts from 1-step to 2-step mechanism on crossing the spinodal. J Chem Phys 150:124502

    Article  Google Scholar 

  15. Bots P, Benning LG, Rodriguez-Blanco JD, Roncal-Herrero T, Shaw S (2012) Mechanistic insights into the crystallization of amorphous calcium carbonate (ACC). Cryst Growth Des 12:3806–3814

    Article  CAS  Google Scholar 

  16. Nielsen MH, Aloni S, De Yoreo JJ (2014) In situ TEM imaging of CaCO\(_3\) nucleation reveals coexistence of direct and indirect pathways. Science 345:1158–1162

    Article  CAS  Google Scholar 

  17. Rodriguez-Blanco JD, Shaw S, Benning LG (2011) The kinetics and mechanisms of amorphous calcium carbonate (ACC) crystallization to calcite, via vaterite. Nanoscale 3:265–271

    Article  CAS  Google Scholar 

  18. Henzler K, Fetisov EO, Galib M, Baer MD, Legg BA, Borca C, Xto JM, Pin S, Fulton JL, Schenter GK, Govind N, Siepmann JI, Mundy CJ, Huthwelker T, De Yoreo JJ (2018) Supersaturated calcium carbonate solutions are classical. Sci Adv 4:eaao6283

    Google Scholar 

  19. Gebauer D, Raiteri P, Gale JD, Cölfen H (2018) On classical and non-classical views on nucleation. Am J Sci 318:969–988

    Article  CAS  Google Scholar 

  20. Duignan TT, Baer MD, Mundy CJ (2016) Ions interacting in solution: moving from intrinsic to collective properties. Curr Opin Colloid Interface Sci 23:58–65

    Article  CAS  Google Scholar 

  21. Becke AD (1988) Density-functional exchange-energy approximation with correct asymptotic-behavior. Phys Rev A 38:3098–3100

    Article  CAS  Google Scholar 

  22. Grimme S (2004) Accurate description of van der Waals complexes by density functional theory including empirical corrections. J Comput Chem 25:1463–1473

    Article  CAS  Google Scholar 

  23. Lee C, Yang W, Parr RG (1988) Development of the Colle-Salvetti correlation-energy formula into a functional of the electron-density. Phys Rev B 37:785–789

    Article  CAS  Google Scholar 

  24. Raiteri P, Gale JD, Quigley D, Rodger PM (2010) Derivation of an accurate force-field for simulating the growth of calcium carbonate from aqueous solution: a new model for the calcite water interface. J Phys Chem C 114:5997–6010

    Article  CAS  Google Scholar 

  25. Raiteri P, Demichelis R, Gale JD (2015) Thermodynamically consistent force field for molecular dynamics simulations of alkaline-earth carbonates and their aqueous speciation. J Phys Chem C 119:24447–24458

    Google Scholar 

  26. Kelton K, Greer A (2010) The classical theory (Chap. 2). In: Kelton K, Greer A (eds) Nucleation in condensed matter, Pergamon materials series, vol 15. Pergamon, pp 19–54

    Google Scholar 

  27. Jiang H, Haji-Akbari A, Debenedetti PG, Panagiotopoulos AZ (2018) Forward flux sampling calculation of homogeneous nucleation rates from aqueous NaCl solutions. J Chem Phys 148:044505

    Article  Google Scholar 

  28. Chen B, Siepmann JI (2001) Improving the efficiency of the aggregation-volume-bias Monte Carlo algorithm. J Phys Chem B 105:11275–11282

    Article  CAS  Google Scholar 

  29. Chen B, Siepmann JI, Oh KJ, Klein ML (2001) Aggregation-volume-bias Monte Carlo simulations of vapor-liquid nucleation barriers for Lennard-Jonesium. J Chem Phys 115:10903–10913

    Article  CAS  Google Scholar 

  30. Siepmann JI, Frenkel D (1992) Configurational bias Monte Carlo: a new sampling scheme for flexible chains. Mol Phys 75:59–70

    Article  CAS  Google Scholar 

  31. Stillinger FH (1963) Rigorous basis of the Frenkel-Band theory of association equilibrium. J Chem Phys 38:1486–1494

    Article  CAS  Google Scholar 

  32. Plummer LN, Busenberg E (1982) The solubilities of calcite, aragonite and vaterite in CO\(_2\)-H\(_2\)O solutions between 0 and 90\(^{\circ }\)C, and an evaluation of the aqueous model for the system CaCO\(_3\)-CO\(_2\)-H\(_2\)O. Geochim Cosmochim Acta 46:1011–1040

    Article  CAS  Google Scholar 

  33. Wedekind J, Reguera D (2007) What is the best definition of a liquid cluster at the molecular scale? J Chem Phys 127:154516

    Article  Google Scholar 

  34. Lee JK, Barker JA, Abraham FF (1973) Theory and Monte Carlo simulation of physical clusters in the imperfect vapor. J Chem Phys 58:3166–3180

    Article  CAS  Google Scholar 

  35. Wallace AF, Hedges LO, Fernandez-Martinez A, Raiteri P, Gale JD, Waychunas GA, Whitelam S, Banfield JF, De Yoreo JJ (2013) Microscopic evidence for liquid-liquid separation in supersaturated CaCO\(_3\) solutions. Science 341:885–889

    Article  CAS  Google Scholar 

  36. Kathmann SM, Schenter GK, Garrett BC (2004) Multicomponent dynamical nucleation theory and sensitivity analysis. J Chem Phys 120:9133–9141

    Article  CAS  Google Scholar 

  37. Kathmann SM, Schenter GK, Garrett BC (2002) Understanding the sensitivity of nucleation kinetics: a case study on water. J Chem Phys 116:5046–5057

    Article  CAS  Google Scholar 

  38. Lassin A, André L, Devau N, Lach A, Beuvier T, Gibaud A, Gaboreau S, Azaroual M (2018) Dynamics of calcium carbonate formation: Geochemical modeling of a two-step mechanism. Geochim Cosmochim Acta 240:236–254

    Article  CAS  Google Scholar 

  39. Hale BN (1996) Monte Carlo calculations of effective surface tension for small clusters. Aust J Phys 49:425–434

    Article  CAS  Google Scholar 

  40. Bolze J, Peng B, Dingenouts N, Panine P, Narayanan T, Ballauff M (2002) Formation and growth of amorphous colloidal CaCO\(_3\) precursor particles as detected by time-resolved SAXS. Langmuir 18:8364–8369

    Article  CAS  Google Scholar 

  41. Bolze J, Pontoni D, Ballauff M, Narayanan T, Cölfen H (2004) Time-resolved SAXS study of the effect of a double hydrophilic block-copolymer on the formation of CaCO\(_3\) from a supersaturated salt solution. J Colloid Interf Sci 277:84–94

    Article  CAS  Google Scholar 

  42. Faatz M, Cheng W, Wegner G, Fytas G, Penciu RS, Economou EN (2005) Mechanical strength of amorphous CaCO\(_3\) colloidal spheres. Langmuir 21:6666–6668

    Google Scholar 

  43. Söhnel O, Mullin J (1978) A method for the determination of precipitation induction periods. J Cryst Growth 44:377–382

    Article  Google Scholar 

  44. Reiss H, Bowles RK (1999) Some fundamental statistical mechanical relations concerning physical clusters of interest to nucleation theory. J Chem Phys 111:7501–7504

    Article  CAS  Google Scholar 

  45. Shen ZY, Chen Q, Xie S, Lodge TP, Siepmann JI (2021) Effects of electrolytes on thermodynamics and structure of oligo(ethylene oxide)/salt solutions and liquid–liquid equilibria of a squalane/tetraethylene glycol dimethyl ether blend. Macromolecules 54:1120–1136

    Google Scholar 

Download references

Acknowledgements

During the review process, we became aware of the recent work of Gebauer et al. [19]. We have thus added a paragraph in our finalized article addressing their critique of the original work by Henzler et al. [18]. The authors would like to thank Jim De Yoreo and Ben Legg for helpful discussions. PMF and MM simulations were performed at the Pacific Northwest National Laboratory (PNNL) with support from the U.S. Department of Energy (DOE), Office of Science, Office of Basic Energy Sciences (BES), Division of Material Sciences and Engineering. The solution model and theoretical developments were supported by the DOE, Office of Science, BES, Division of Chemical Sciences, Geosciences, and Biosciences. DFT simulations were performed within the Materials Synthesis and Simulation Across Scales (MS\(^3\)) Initiative through the Laboratory Research and Development Program at PNNL. The PMF calculations used resources of the National Energy Research Scientific Computing Center, a DOE Office of Science User Facility supported by the DOE, Office of Science under contract no. DE-AC02-05CH11231. AVBMC simulations used resources of the Minnesota Supercomputing Institute and were supported through an award from the NSF (CHE-1265849). PNNL is a multiprogram national laboratory operated for the DOE by Battelle under contract no. DE-AC05-76RL01830.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Christopher J. Mundy .

Editor information

Editors and Affiliations

5 Appendix

5 Appendix

The following development is a generalization of the thermodynamics of clusters to the case of two components. The one component case was established by Reiss and Bowles [44]. This serves to define our thermodynamic references and make a formal connection between molecular statistical mechanics and thermodynamics. We write expressions without internal molecular degrees of freedom for simplicity. Further generalization is straightforward. The \((i_{1},i_{2})\) component partition function is defined as \(q_{(i_{1},i_{2})}=\frac{1}{i_{1}!i_{2}!}\gamma _{1}^{i_{1}}\gamma _{2}^{i_{2}}\int dr_{1}^{\left( i_{1}\right) }dr_{2}^{\left( i_{2}\right) }e^{-\beta U}\Theta \), with the ideal gas partition function, \(q_{(i_{1},i_{2})}^{\mathrm {IG}}=\frac{1}{i_{1}!i_{2}!}\gamma _{1}^{i_{1}}\gamma _{2}^{i_{2}}\int dr_{1}^{\left( i_{1}\right) }dr_{2}^{\left( i_{2}\right) }\Theta \). Here, \(\gamma _{k}=\left( \frac{m_{k}k_{\mathrm {B}}T}{2\pi \hbar }\right) ^{3/2}\), where \(m_{k}\) is the mass of the \(k'th\) component, \(k_{\mathrm {B}}\) is the Boltzmann constant, \(\hbar \) is the Plank constant, and T is the temperature. U is the potential energy of the system. \(\Theta \) serves to partition configuration space defining a cluster of size \((i_{1},i_{2})\). For the case of initial studies of DNT, the center of the mass of the cluster is defined by \(R=\frac{1}{i_{1}+i_{2}}\sum _{k=1}^{2}\sum _{j=1}^{i_{k}}r_{k,j}\), and the definition of the cluster depends on the radius cutoff parameter, \(r_{\mathrm {cut}}\). The spherical volume of the cluster is \(v=\frac{4\pi }{3}r_{\mathrm {cut}}^{3}\). We then write, \(\Theta =\prod _{k=1}^{2}\prod _{j=1}^{i_{k}}\left( r_{\mathrm {cut}}-\left| r_{k,j}-R\right| \right) \). With, \(\bar{i}=i_{1}+i_{2}\) , and \(\bar{r}^{\left( \bar{i}\right) }=\left( r_{1}^{\left( i_{1}\right) },r_{2}^{\left( i_{2}\right) }\right) \), \(q_{(i_{1},i_{2})}^{\mathrm {IG}}=\frac{1}{i_{1}!i_{2}!}\gamma _{1}^{i_{1}}\gamma _{2}^{i_{2}}\bar{i}^{3/2}Vv^{\left( \bar{i}-1\right) }a_{\bar{i}}\), where \(a_{\bar{i}}\) constants that appear in the single component case. We define monomer partition functions as \(q_{(1,0)}=\gamma _{1}V\) and \(q_{(0,1)}=\gamma _{2}V\). Here, V is the volume of the system. The partition function for the full, non-interacting cluster system is Q, where \(\ln Q=\sum _{i_{1}}\sum _{i_{2}}\left\{ N_{(i_{1},i_{2})}\ln \left[ q_{(i_{1},i_{2})}\right] -N_{(i_{1},i_{2})}\ln N_{(i_{1},i_{2})}+N_{(i_{1},i_{2})}\right\} \). Following Reiss and Bowles [44], we introduce particle and volume conservation constraints through Lagrange multipliers and consider the extended partition function, \(\Phi \), to apply the stationary phase analysis:

$$\begin{aligned} \begin{aligned} \ln \Phi =\ln Q+\beta \mu _{1}\sum _{i_{1}}i_{1}\sum _{i_{2}}N_{(i_{1},i_{2})}+\beta \mu _{2}\sum _{i_{2}}i_{2}\sum _{i_{1}}N_{(i_{1},i_{2})} \\ -\beta p\left[ V+\sum _{i_{1}}\sum _{i_{2}}v_{(i_{1},i_{2})}N_{(i_{1},i_{2})}\right] . \end{aligned} \end{aligned}$$
(15)

Here, \(v_{(i_{1},i_{2})}\) is a volume of a cluster, \(\mu _{k}\) is the chemical potential of monomer k, p is the pressure of the system.

We then have the conditions, \(\frac{d\ln \Phi }{dN_{\left( 1,0\right) }}=\ln \left[ \gamma _{1}V\right] -\ln N_{(1,0)}+\beta \mu _{1}=0\), \(\frac{d\ln \Phi }{dN_{\left( 0,1\right) }}=\ln \left[ \gamma _{2}V\right] -\ln N_{(0,1)}+\beta \mu _{2}=0\), \(\frac{d\ln \Phi }{dV}=\frac{N_{\left( 1,0\right) }+N_{\left( 0,1\right) }}{V}-\beta p=0\), and \(\frac{d\ln \Phi }{dN_{(i_{1},i_{2})}}=\ln \left[ q_{(i_{1},i_{2})}\right] -\ln N_{(i_{1},i_{2})}+\beta \mu _{1}i_{1}+\beta \mu _{2}i_{2}-\beta pv_{(i_{1},i_{2})}=0\). Further simplification gives \(\beta \mu _{1}=\ln \left[ \frac{N_{(1,0)}}{\gamma _{1}V}\right] \), \(\beta \mu _{2}=\ln \left[ \frac{N_{(0,1)}}{\gamma _{2}V}\right] \), and \(\beta pV=N_{\left( 1,0\right) }+N_{\left( 0,1\right) }\). The equilibrium population resulting from the stationary phase analysis, \(N_{(i_{1},i_{2})}^{\mathrm {EQ}}\), is \(\ln N_{(i_{1},i_{2})}^{\mathrm {EQ}}=\ln \left[ q_{(i_{1},i_{2})}\right] +\beta \mu _{1}i_{1}+\beta \mu _{2}i_{2}-\beta pv_{(i_{1},i_{2})}\). It is natural to define the total Helmholtz free energy, \(A_{(i_{1},i_{2})}^{\mathrm {TOT}}\), by \(-\beta A_{(i_{1},i_{2})}^{\mathrm {TOT}}=\ln \left[ q_{(i_{1},i_{2})}\right] \). Collecting terms, we have \(\ln N_{(i_{1},i_{2})}^{\mathrm {EQ}}=-\beta \left[ A_{(i_{1},i_{2})}^{\mathrm {TOT}}+pv_{(i_{1},i_{2})}-\mu _{1}i_{1}-\mu _{2}i_{2}\right] \). It is useful to separate out the translational component of the free energy, \(A_{(i_{1},i_{2})}^{\mathrm {trans}}=-k_{\mathrm {B}}T\ln \left( \gamma _{\mathrm {TOT}}V\right) \), where \(\gamma _{\mathrm {TOT}}=\left( \frac{\left( m_{1}i_{1}+m_{2}i_{2}\right) k_{\mathrm {B}}T}{2\pi \hbar }\right) ^{3/2}\) and \(A_{(i_{1},i_{2})}^{\mathrm {TOT}}=A_{(i_{1},i_{2})}+A_{(i_{1},i_{2})}^{\mathrm {trans}}\). The natural definition of the Gibbs free energy follows, \(G_{(i_{1},i_{2})}=A_{(i_{1},i_{2})}+pv_{(i_{1},i_{2})}\). We then have \(N_{(i_{1},i_{2})}^{\mathrm {EQ}}=e^{-\beta \left[ G_{(i_{1},i_{2})}+A_{(i_{1},i_{2})}^{\mathrm {trans}}-\mu _{1}i_{1}-\mu _{2}i_{2}\right] }\). This may be recast to recover our main result that connects microscopic statistical mechanics (cluster populations) and macroscopic thermodynamics (Gibbs free energies):

$$\begin{aligned} N_{(i_{1},i_{2})}^{\mathrm {EQ}}=e^{-\beta G_{(i_{1},i_{2})}}\left( \gamma _{\mathrm {TOT}}V\right) \left( \frac{N_{(1,0)}}{\gamma _{1}V}\right) ^{i_{1}}\left( \frac{N_{(0,1)}}{\gamma _{2}V}\right) ^{i_{2}}. \end{aligned}$$
(16)

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Fetisov, E.O., Baer, M.D., Siepmann, J.I., Schenter, G.K., Kathmann, S.M., Mundy, C.J. (2021). The Statistical Mechanics of Solution-Phase Nucleation: CaCO\(_3\) Revisited. In: Maginn, E.J., Errington, J. (eds) Foundations of Molecular Modeling and Simulation. Molecular Modeling and Simulation. Springer, Singapore. https://doi.org/10.1007/978-981-33-6639-8_5

Download citation

Publish with us

Policies and ethics