Skip to main content

Two-Stage DEA of 122 Paddy Fields in Hokuriku Region

  • Chapter
  • First Online:
Empirical Analyses on Rice Yield Determinants of Smart Farming in Japan

Abstract

In Japan, rice production is undergoing a transition from acreage reduction to an improvement in efficiency and competitiveness. Owing to the global warming, irrigation management is increasingly important in maintaining soil temperature and fertility for rice productivity. This chapter aimed to measure the production efficiency of rice yield, using a two-stage DEA like the former chapter. The data comprised of 122 paddy fields of Koshihikari, one of the most popular Japanese rice varieties. The data was sampled from a large-scale farm located in the Hokuriku Region of Japan in 2015.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  • Abdullah, D., & Ali, S. (2014). Influence of subsurface drainage on the productivity of poorly drained paddy fields. European Journal of Agronomy, 56, 1–8. https://doi.org/10.1016/j.eja.2014.02.003.

    Article  Google Scholar 

  • Aigner, D., Lovell, C., & Schmidt, P. (1977). Formulation and estimation of stochastic frontier production function models. Journal of Econometrics, 6, 21–37. https://doi.org/10.1016/0304-4076(77)90052-5.

    Article  Google Scholar 

  • Allen, R. G., Pereira, L. S., Raes, D., & Smith, M. (1998). Crop evapotranspiration: guidelines for computing crop water requirements, United Nations Food and Agriculture Organization (Irrigation and Drainage Paper 56). Rome, 95–97, 103–109. https://s3.amazonaws.com/academia.edu.documents/40878584/Allen_FAO1998.pdf.

  • Asaoka, M., Okuno, K., Sugimoto, T., & Fuwa, H. (1985). Developmental changes in the structure of endosperm starch of rice (Oryza sativa L.). Agricultural and Biological Chemistry, 49, 1973–1978. https://doi.org/10.1271/bbb1961.49.1973.

    Article  Google Scholar 

  • Audibert, M., Mathonnat, J., & Henry, M. C. (2003). Social and health determinants of the efficiency of cotton farmers in Northern Côte d’Ivoire. Social Science and Medicine, 56, 1705–1717.

    Article  Google Scholar 

  • Barrett, C. B., Bellemare, M. F., & Hou, J. Y. (2010). Reconsidering conventional explanations of the inverse productivity-size relationship. World Development, 38(1), 88–97. https://doi.org/10.1016/j.worlddev.2009.06.002.

    Article  Google Scholar 

  • Bouman, B. A. M., & Tuong, T. P. (2001). Field water management to save water and increase its productivity in irrigated lowland rice. Agricultural Water Management, 49, 11–30.

    Article  Google Scholar 

  • Charnes, A., Cooper, W., & Rhodes, E. (1978). Measuring the efficiency of decision-making units. European Journal of Operations Research, 2, 429–444. https://doi.org/10.1016/0377-2217(78)90138-8.

    Article  Google Scholar 

  • Choudhury, B. U., & Singh, A. K. (2016). Estimation of crop coefficient of irrigated transplanted puddled rice by field scale water balance in the semi-arid Indo-Gangetic Plains, India. Agricultural Water Management, 176, 142–150. https://doi.org/10.1016/j.agwat.2016.05.027.

    Article  Google Scholar 

  • Coelli, T. J., Prasada, R. D. S., Christopher, J. O., & George, E. B. (2005). An introduction to efficiency and productivity analysis (2nd ed., pp. 161–179, 211–213, 261). New York: Springer.

    Google Scholar 

  • Farrell, M. J. (1957). The measurement of productive efficiency. Journal of the Royal Statistical Society, 120, 253–290.

    Article  Google Scholar 

  • Goto, Y., Nitta, Y., & Nakamura, S. (2000). Crops I: Paddy cultivation (pp. 120, 137–142, 195, 210–211). Tokyo: Japan Agricultural Development and Extension Association (JADEA) (in Japanese).

    Google Scholar 

  • Hirai, Y., Saruta, K., & Hamagami, K. (2012). Evaluation of an analytical method to identify determinants of rice yield component and protein content. Computers and Electronics in Agriculture, 83, 77–84. https://doi.org/10.1016/j.compag.2012.02.001.

    Article  Google Scholar 

  • Komenet. (2020). Information on production of rice in Japan. https://www.komenet.jp/data/jukyuudb/jukyuudb2/ (in Japanese).

  • Kozak, M., Singh, P. K., Verma, M. R., & Hore, D. K. (2007). Causal mechanism for determination of grain yield and milling quality of lowland rice. Field Crop Research, 102, 178–184. https://doi.org/10.1016/j.fcr.2007.03.010.

    Article  Google Scholar 

  • Li, D., Nanseki, T., Chomei, Y., Sasaki, T., & Butta, T. (2017). Technical efficiency and the effects of water management on rice production in Japan: two-stage DEA on 122 paddy fields of a large-scale farm. In Proceedings of annual symposium of the farm management society of Japan (FMSJ).

    Google Scholar 

  • Li, D., Nanseki, T., Chomei, Y., & Yokota, S. (2018). Production efficiency and effect of water management on rice yield in Japan: Two-stage DEA analysis on 110 paddy fields of a large-scale farm. Paddy and Water Environment, 16, 643–654. https://doi.org/10.1007/s10333-018-0652-0.

    Article  Google Scholar 

  • Li, D., Nanseki, T., Matsue, Y., Chomei, Y., & Shuichi, Y. (2016). Determinants of paddy yield of individual fields measured by IT combine: Empirical analysis from the perspective of large-scale farm management in Japan. Agricultural Information Research, 25(1), 39–46.

    Article  Google Scholar 

  • MAFF. (2016a). Statistics on the paddy yield of Japan in 2014. http://www.maff.go.jp/j/tokei/kouhyou/sakumotu/sakkyou_kome/pdf/syukaku_suiriku_14.pdf (in Japanese).

  • MAFF. (2016b). Statistics on agricultural production costs of Japan. http://www.maff.go.jp/j/tokei/sihyo/data/12-2.html (in Japanese).

  • Matsue, Y. (2016). Rice production technology for yield and quality improvement of high temperature during the ripening period. In Proceedings of the annual symposium of the Japanese Agricultural Systems Society (JASS) (in Japanese).

    Google Scholar 

  • Nanseki, T. (Ed.). (2019). Smart agriculture practice in rice-farming and perspective of farm in next-generation (pp. 166, 363). Tokyo: Yokendo (in Japanese).

    Google Scholar 

  • Nanseki, T., Chomei, Y., & Matsue, Y. (Ed.). (2016). Rice farm management innovation and smart agriculture in TPP era: Farming technology package and ICT applications (pp. 2–22, 168–178, 198–237). Tokyo, Japan: Yokendo (in Japanese).

    Google Scholar 

  • NRCS (National Resources Conservation Services, USDA). (2017). Water Management—NRCS National Ag Water Management (AGWAM) Team. Retrieved November 20, 2017, from https://www.nrcs.usda.gov/wps/portal/nrcs/main/national/water/manage/.

  • Roel, A., Mutters, R. G., Eckert, J. W., & Plant, R. E. (2005). Effect of low water temperature on rice yield in California. Agronomy Journal, 97, 943–948. https://doi.org/10.2134/agronj2004.0129.

    Article  Google Scholar 

  • Saga, K., Imou, K., Yokoyama, S., & Minowa, T. (2010). Net energy analysis of bioethanol production system from high-yield rice plant in Japan. Applied Energy, 87, 2164–2168. https://doi.org/10.1016/j.apenergy.2009.12.014.

    Article  Google Scholar 

  • Sellamuthua, R., Liu, G., Ranganathan, C. B., & Serraj, R. (2011). Genetic analysis and validation of quantitative trait loci associated with reproductive-growth traits and grain yield under drought stress in a doubled haploid line population of rice (Oryza sativa L.). Field Crops Research, 124, 46–58. https://doi.org/10.1016/j.fcr.2011.06.002.

    Article  Google Scholar 

  • Tao, Y., Zhang, Y., Jin, X., Saiz, G., Jing, R., Guo, L., et al. (2015). More rice with less water: evaluation of yield and resource use efficiency in ground cover rice production system with transplanting. European Journal of Agronomy, 68, 13–21. https://doi.org/10.1016/j.eja.2015.04.002.

    Article  Google Scholar 

  • Tsujimoto, Y., Horie, T., Randriamihary, H., Shiraiwa, T., & Homma, K. (2009). Soil management: The key factors for higher productivity in the fields utilizing the system of rice intensification (SRI) in the central highland of Madagascar. Agricultural Systems, 100, 61–71. https://doi.org/10.1016/j.agsy.2009.01.001.

    Article  Google Scholar 

  • Wang, Z., Zhang, W., Beebout, S., Zhang, H., Liu, L., & Zhang, J. (2016). Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates. Field Crop Research, 193, 54–69.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Teruaki Nanseki .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, D., Nanseki, T., Chomei, Y. (2021). Two-Stage DEA of 122 Paddy Fields in Hokuriku Region. In: Li, D., Nanseki, T. (eds) Empirical Analyses on Rice Yield Determinants of Smart Farming in Japan. Springer, Singapore. https://doi.org/10.1007/978-981-33-6256-7_10

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6256-7_10

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6255-0

  • Online ISBN: 978-981-33-6256-7

  • eBook Packages: Economics and FinanceEconomics and Finance (R0)

Publish with us

Policies and ethics