Skip to main content

Nanomaterials in Medicine

  • Chapter
  • First Online:
Nanomaterials and Their Biomedical Applications

Part of the book series: Springer Series in Biomaterials Science and Engineering ((SSBSE,volume 16))

  • 553 Accesses

Abstract

For decades, man has explored the cures for many diseases and illnesses. Scientists now believe that nanotechnology can perform that miracle. Nanomaterials in medicine are an attempt to limit or reverse pathological processes, and its advantages are due to their specific characteristics, such as the capacity to interact with biological systems with a high degree of specificity. The ultimate goal of nanomedicine is to identify and treat diseases as early as possible at the subcellular level. The application of nanotechnology in medicine ranges from diagnostics to therapeutics. In diagnostic imaging, nanomaterials are used to target a specific type of cancer cell, which would enable radiologists to visualize insignificant features at a better resolution possible. Moreover, nanomaterials are thought to stimulate and interact with target cells and tissues in controlled ways and to induce desired physiological responses with minimal side effects. Nanomedicine researchers developed an assay for early diagnosis of Alzheimer’s disease with better accuracy and sensitivity than conventional methods. This new assay uses gold nanoparticles (NP) and magnetic microparticles (MMP) to bind to the biomarkers of Alzheimer’s disease. Physicians use nanoparticles to target drugs at the source of the infection, thereby increasing the efficiency and minimizing the side effects. Nanoparticles are also used to stimulate the body’s innate repair mechanisms by artificially activating and controlling the adult stem cells. To promote neuronal repair and regeneration, researchers use bio-reactive nanoscaffolding. In this chapter, we will explore how nanomaterials are used in medicine and its prospects.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Al-Kayiem H, Lin S, Lukmon A (2013) Review on nanomaterials for thermal energy storage technologies. Nanosci Nanotechnology-Asia. https://doi.org/10.2174/22113525113119990011

    Article  Google Scholar 

  2. He H, Pham-Huy LA, Dramou P, Xiao D, Zuo P, Pham-Huy C (2013) Carbon nanotubes: applications in pharmacy and medicine. Biomed Res Int 2013. https://doi.org/10.1155/2013/578290

  3. Bhagath GP, Singh, Chandu Baburao, Vedayas Pispati H, Pathipati, Narashimha Muthy SP, BGR (2012) Carbon nanotubes—A novel drug delivery system. Int J Res Pharm Chem. https://doi.org/10.1007/s11060-011-0763-6

  4. Akbarzadeh A, Rezaei-Sadabady R, Davaran S, Joo SW, Zarghami N, Hanifehpour Y, Samiei M, Kouhi M, Nejati-Koshki K (2013) Liposome: classification, preparation, and applications. Nanoscale Res Lett. https://doi.org/10.1186/1556-276X-8-102

    Article  Google Scholar 

  5. Zdrojewicz Z, Waracki M, Bugaj B, Pypno D, Cabała K (2015) Medical applications of nanotechnology Zastosowanie nanotechnologii w medycynie. Postepy Hig Med Dosw 1196–1204

    Google Scholar 

  6. Junghanns JUAH, Müller RH (2008) Nanocrystal technology, drug delivery and clinical applications. Int J Nanomedicine 3(3):295–309

    Google Scholar 

  7. Gigliobianco MR, Casadidio C, Censi R, Di Martino P (2018) Nanocrystals of poorly soluble drugs: drug bioavailability and physicochemical stability. Pharm 10(3):134

    Google Scholar 

  8. Yadav N, Khatak S, Singh Sara UV (2013) Solid lipid nanoparticles—a review. Int J Appl Pharm 5(2):8–18

    Google Scholar 

  9. Mazzola L (2003) Commercializing nanotechnology. Nat Biotechnol 21:1137–1143. https://doi.org/10.1038/nbt1003-1137

    Article  Google Scholar 

  10. Zhang B, Yan W, Zhu Y, Yang W, Le W, Chen B, Zhu R, Cheng L (2018) Nanomaterials in Neural-Stem-Cell-mediated regenerative medicine: imaging and treatment of neurological diseases. Adv Mater 30:1–23. https://doi.org/10.1002/adma.201705694

    Article  ADS  Google Scholar 

  11. Zhao Y, Sultan D, Detering L, Cho S, Sun G, Pierce R, Wooley KL, Liu Y (2014) Copper-64-alloyed gold nanoparticles for cancer imaging: Improved radiolabel stability and diagnostic accuracy. Angew Chemie Int Ed. https://doi.org/10.1002/anie.201308494

    Article  Google Scholar 

  12. Skalska J, Frontczak-Baniewicz M, Strużyńska L (2015) Synaptic degeneration in rat brain after prolonged oral exposure to silver nanoparticles. Neurotoxicol 46:145–154. https://doi.org/10.1016/j.neuro.2014.11.002

    Article  Google Scholar 

  13. Rosen AB, Schuldt AJT, Kelly DJ, Potapova IA, Doronin SV., Brink PR, Gaudette GR, Cohen IS (2007) Quantitative analysis of hMSC-seeded biological scaffolds using quantum dot nanoparticles. In: Bioengineering, Proceedings of the Northeast Conference

    Google Scholar 

  14. Sanchez DNR, Bertanha M, Fernandes TD, Resende LA de L, Deffune E, Amorim RM (2017) Effects of canine and murine mesenchymal stromal cell transplantation on peripheral nerve regeneration. Int J Stem Cells. https://doi.org/10.15283/ijsc16037

  15. Agarwal R, Domowicz MS, Schwartz NB, Henry J, Medintz I, Delehanty JB, Stewart MH, Susumu K, Huston AL, Deschamps JR, Dawson PE, Palomo V, Dawson G (2015) Delivery and tracking of quantum dot peptide bioconjugates in an intact developing avian brain. ACS Chem Neurosci. https://doi.org/10.1021/acschemneuro.5b00022

  16. Singer M, Deutschman CS, Seymour C, Shankar-Hari M, Annane D, Bauer M, Bellomo R, Bernard GR, Chiche JD, Coopersmith CM, Hotchkiss RS, Levy MM, Marshall JC, Martin GS, Opal SM, Rubenfeld GD, Der Poll T, Vincent JL, Angus DC (2016) The third international consensus definitions for sepsis and septic shock (sepsis-3). JAMA J Am Med, Assoc

    Book  Google Scholar 

  17. Yuk SA, Sanchez-Rodriguez DA, Tsifansky MD, Yeo Y (2018) Recent advances in nanomedicine for sepsis treatment. Ther Deliv 9(6):435–450

    Google Scholar 

  18. Ashton S, Song YH, Nolan J, Cadogan E, Murray J, Odedra R, Foster J, Hall PA, Low S, Taylor P, Ellston R, Polanska UM, Wilson J, Howes C, Smith A, Goodwin RJA, Swales JG, Strittmatter N, Takáts Z, Nilsson A, Andren P, Trueman D, Walker M, Reimer CL, Troiano G, Parsons D, De Witt D, Ashford M, Hrkach J, Zale S, Jewsbury PJ, Barry ST (2016) Aurora kinase inhibitor nanoparticles target tumors with favorable therapeutic index in vivo. Sci Transl Med. https://doi.org/10.1126/scitranslmed.aad2355

    Article  Google Scholar 

  19. Ward NS, Levy MM (2017) Sepsis: definitions, Pathophysiology and the challenge of bedside management. Humana Press, Cham (Switzerland)

    Google Scholar 

  20. Sondi I, Salopek-Sondi B (2004) Silver nanoparticles as antimicrobial agent: a case study on E. coli as a model for Gram-negative bacteria. J Colloid Interface Sci. https://doi.org/10.1016/j.jcis.2004.02.012

  21. Le Ouay B, Stellacci F (2015) Antibacterial activity of silver nanoparticles: a surface science insight. Nano Today

    Google Scholar 

  22. Pal S, Tak YK, Song JM (2007) Does the antibacterial activity of silver nanoparticles depend on the shape of the nanoparticle? A study of the gram-negative bacterium Escherichia coli. Appl Environ Microbiol. https://doi.org/10.1128/AEM.02218-06

  23. Lansdown ABG (2006) Silver in health care: antimicrobial effects and safety in use. Curr Probl Dermatol 33:17–34

    Google Scholar 

  24. Lam SJ, O’Brien-Simpson NM, Pantarat N, Sulistio A, Wong EHH, Chen YY, Lenzo JC, Holden JA, Blencowe A, Reynolds EC, Qiao GG (2016) Combating multidrug-resistant gram-negative bacteria with structurally nanoengineered antimicrobial peptide polymers. Nat Microbiol. https://doi.org/10.1038/nmicrobiol.2016.162

    Article  Google Scholar 

  25. Gessner I, Neundorf I (2020) Nanoparticles Modified with cell-penetrating peptides: conjugation mechanisms, physicochemical properties, and application in cancer diagnosis and therapy. Int J Mol Sci 21:1–21. https://doi.org/10.3390/ijms21072536

    Article  Google Scholar 

  26. Silva S, Almeida AJ, Vale N (2019) Combination of cell-penetrating peptides with nanoparticles for therapeutic application: a review. Biomol

    Google Scholar 

  27. Wei G, Wang Y, Huang X, Hou H, Zhou S (2018) Peptide-based nanocarriers for cancer therapy. Small Methods 2:1700358. https://doi.org/10.1002/smtd.201700358

    Article  Google Scholar 

  28. Dos Santos Rodrigues B, Lakkadwala S, Kanekiyo T, Singh J (2019) Development and screening of brain-targeted lipid-based nanoparticles with enhanced cell penetration and gene delivery properties. Int J Nanomedicine 14:6497–6517. https://doi.org/10.2147/IJN.S215941

    Article  Google Scholar 

  29. Libutti SK, Paciotti GF, Myer L, Haynes R, Gannon W, Walker M, Seidel G, Byrnes A, Yuldasheva N, Tamarkin L (2009) Results of a completed phase I clinical trial of CYT-6091: a pegylated colloidal gold-TNF nanomedicine. J Clin Oncol

    Google Scholar 

  30. Chen G, Karzai F, Madan RA, Cordes LM, Bilusic M, Owens H, Hankin A, Williams M, Couvillon A, Gulley JL, Dahut WL, Thomas A (2018) CRLX101 plus olaparib in patients with metastatic castration-resistant prostate cancer. J Clin Oncol. https://doi.org/10.1200/jco.2018.36.15_suppl.tps5096

    Article  Google Scholar 

  31. Atrafi F, Dumez H, Mathijssen RHJ, Menke CW, Costermans J, Rijcken CJF, Hanssen R, Eskens F, Schoffski P (2019) A phase I dose-finding and pharmacokinetics study of CPC634 (nanoparticle entrapped docetaxel) in patients with advanced solid tumors. J Clin Oncol. https://doi.org/10.1200/jco.2019.37.15_suppl.3026

    Article  Google Scholar 

  32. Trafton A (2018) Tiny particles could help fight brain cancer. MIT News

    Google Scholar 

  33. Amini MA, Abbasi AZ, Cai P, Lip HY, Gordijo CR, Li J, Chen B, Zhang L, Rauth AM, Yu WuX (2019) Combining tumor microenvironment modulating nanoparticles with doxorubicin to enhance chemotherapeutic efficacy and boost antitumor immunity. J Natl Cancer Inst. https://doi.org/10.1093/jnci/djy131

    Article  Google Scholar 

  34. Souto EB, Souto SB, Campos JR, Severino P, Pashirova TN, Zakharova LY, Silva AM, Durazzo A, Lucarini M, Izzo AA, Santini A (2019) Nanoparticle Delivery Systems in the treatment of diabetes complications. Mol 24:4209. https://doi.org/10.3390/molecules24234209

    Article  Google Scholar 

  35. Lipani L, Dupont BGR, Doungmene F, Marken F, Tyrrell RM, Guy RH, Ilie A (2018) Non-invasive, transdermal, path-selective and specific glucose monitoring via a graphene-based platform. Nat Nanotechnol 13:504–511. https://doi.org/10.1038/s41565-018-0112-4

    Article  ADS  Google Scholar 

  36. Ramanathan S, Archunan G, Sivakumar M, Tamil Selvan S, Fred AL, Kumar S, Gulyás B, Padmanabhan P (2018) Theranostic applications of nanoparticles in neurodegenerative disorders. Int J Nanomed 13:5561–5576. https://doi.org/10.2147/IJN.S149022

    Article  Google Scholar 

  37. Alzheimer’s facts and figures report

    Google Scholar 

  38. Kaur IP, Bhandari R, Bhandari S, Kakkar V (2008) Potential of solid lipid nanoparticles in brain targeting. J. Control Release

    Google Scholar 

  39. Costa PM, Wang JT-W, Morfin J-F, Khanum T, To W, Sosabowski J, Tóth E, Al-Jamal KT (2018) Functionalised carbon nanotubes enhance brain delivery of amyloid-targeting Pittsburgh Compound B (PiB)-derived ligands. Nanotheranostics 2:168–183. https://doi.org/10.7150/ntno.23125

    Article  Google Scholar 

  40. Ambesh P, Campia U, Obiagwu C, Bansal R, Shetty V, Hollander G, Shani J (2017) Nanomedicine in coronary artery disease. Indian Heart J

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sam James .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

James, S. (2021). Nanomaterials in Medicine. In: Santra, T.S., Mohan, L. (eds) Nanomaterials and Their Biomedical Applications. Springer Series in Biomaterials Science and Engineering, vol 16. Springer, Singapore. https://doi.org/10.1007/978-981-33-6252-9_8

Download citation

Publish with us

Policies and ethics