Skip to main content

Solid Sorption Cycle for Energy Storage, Electricity Generation and Cogeneration

  • Chapter
  • First Online:
Property and Energy Conversion Technology of Solid Composite Sorbents

Part of the book series: Engineering Materials ((ENG.MAT.))

  • 173 Accesses

Abstract

In this chapter, composite sorbents in heat and refrigeration cogeneration cycle, refrigeration and electricity cogeneration cycle based on sorption or resorption technique, resorption power generation cycle for energy storage, electricity generation and cogeneration are presented.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Michel B, Mazet N, Neveu P (2014) Experimental investigation of an innovative thermochemical process operating with a hydrate salt and moist air for thermal storage of solar energy: global performance. Appl Energy 129:177–186

    Article  Google Scholar 

  2. Jacob R, Bruno F (2015) Review on shell materials used in the encapsulation of phase change materials for high temperature thermal energy storage. Renew Sustain Energy Rev 48:79–87

    Article  Google Scholar 

  3. Dheep GR, Sreekumar A (2015) Influence of accelerated thermal charging and discharging cycles on thermo-physical properties of organic phase change materials for solar thermal energy storage applications. Energy Convers Manage 105:13–19

    Article  Google Scholar 

  4. Li T, Wang R, Kiplagat JK, Kang YT (2013) Performance analysis of an integrated energy storage and energy upgrade thermochemical solid-gas sorption system for seasonal storage of solar thermal energy. Energy 50:454–467

    Article  Google Scholar 

  5. Zhou D, Shire GSF, Tian Y (2014) Parametric analysis of influencing factors in phase change material wallboard (PCMW). Appl Energy 119:33–42

    Article  Google Scholar 

  6. Yu N, Wang RZ, Wang LW (2013) Sorption thermal storage for solar energy. Prog Energy Combust Sci 39:489–514

    Article  Google Scholar 

  7. N’Tsoukpoe KE, Liu H, Pierrès NL, Luo L (2009) A review on long-term sorption solar energy storage. Renew Sustain Energy Rev 13:2385–2396

    Article  Google Scholar 

  8. Li G, Qian S, Lee H, Hwang Y, Radermacher R (2014) Experimental investigation of energy and exergy performance of short term adsorption heat storage for residential application. Energy 65:675–691

    Article  Google Scholar 

  9. Li G (2016) Sensible heat thermal storage energy and exergy performance evaluations. Renew Sustain Energy Rev 53:897–923

    Article  Google Scholar 

  10. Aydin D, Utlu Z, Kincay O (2015) Thermal performance analysis of a solar energy sourced latent heat storage. Renew Sustain Energy Rev 50:1213–1225

    Article  Google Scholar 

  11. Chen C, Liu W, Wang H, Peng K (2015) Synthesis and performances of novel solid-solid phase change materials with hexahydroxy compounds for thermal energy storage. Appl Energy 152:198–206

    Article  Google Scholar 

  12. Liu W, Chen G, Yan B, Zhou Z, Du H, Zuo J (2015) Hourly operation strategy of a CCHP system with GSHP and thermal energy storage (TES) under variable loads: a case study. Energy & Buildings 93:143–153

    Article  Google Scholar 

  13. Alam TE, Dhau JS, Goswami DY, Stefanakos E (2015) Macroencapsulation and characterization of phase change materials for latent heat thermal energy storage systems. Appl Energy 154:92–101

    Article  Google Scholar 

  14. Farid MM, Khudhair AM, Razack SAK, Al-Hallaj S (2004) A review on phase change energy storage: materials and applications. Energy Convers Manage 45:1597–1615

    Article  Google Scholar 

  15. Cot-Gores J, Castell A, Cabeza LF (2012) Thermochemical energy storage and conversion: a-state-of-the-art review of the experimental research under practical conditions. Renew Sustain Energy Rev 16:5207–5224

    Article  Google Scholar 

  16. Balasubramanian G, Ghommem M, Hajj MR, Wong WP, Tomlin JA, Puri IK (2010) Modeling of thermochemical energy storage by salt hydrates. Int J Heat Mass Transf 53:5700–5706

    Article  MATH  Google Scholar 

  17. Johannes K, Kuznik F, Hubert JL, Durier F, Obrecht C (2015) Design and characterisation of a high powered energy dense zeolite thermal energy storage system for buildings. Appl Energy 159:80–86

    Article  Google Scholar 

  18. Korhammer K, Druske MM, Fopah-Lele A, Rammelberg HU, Wegscheider N, Opel O et al (2016) Sorption and thermal characterization of composite materials based on chlorides for thermal energy storage. Appl Energy 162:1462–1472

    Article  Google Scholar 

  19. Yan T, Wang RZ, Li TX, Wang LW, Fred IT (2015) A review of promising candidate reactions for chemical heat storage. Renew Sustain Energy Rev 43:13–31

    Article  Google Scholar 

  20. Li TX, Wang RZ, Yan T (2015) Solid-gas thermochemical sorption thermal battery for solar cooling and heating energy storage and heat transformer. Energy 84:745–758

    Article  Google Scholar 

  21. Haije WG, Veldhuis JBJ, Smeding SF, Grisel RJH (2007) Solid/vapour sorption heat transformer: design and performance. Appl Therm Eng 27:1371–1376

    Article  Google Scholar 

  22. Li TX, Wu S, Yan T, Xu JX, Wang RZ (2016) A novel solid-gas thermochemical multilevel sorption thermal battery for cascaded solar thermal energy storage. Appl Energy 161:1–10

    Article  Google Scholar 

  23. Goetz V, Spinner B, Lepinasse E (1997) A solid-gas thermochemical cooling system using BaCl2 and NiCl2. Energy 22:49–58

    Article  Google Scholar 

  24. Wang LW, Bao HS, Wang RZ (2009) A comparison of the performances of adsorption and resorption refrigeration systems powered by the low grade heat. Renew Energy 34:2373–2379

    Article  Google Scholar 

  25. Zhu FQ, Jiang L, Wang LW, Wang RZ (2016) Experimental investigation on a MnCl2 CaCl2 NH3 resorption system for heat and refrigeration cogeneration. Appl Energy 181:29–37

    Article  Google Scholar 

  26. Jiang L, Wang LW, Jin ZQ, Tian B, Wang RZ (2012) Permeability and thermal conductivity of compact adsorbent of salts for sorption refrigeration. J Heat Transfer 134:104503

    Article  Google Scholar 

  27. Jiang L, Wang LW, Wang RZ (2014) Investigation on thermal conductive consolidated composite CaCl2 for adsorption refrigeration. Int J Therm Sci 81:68–75

    Article  Google Scholar 

  28. Wang LW, Metcalf SJ, Critoph RE, Thorpe R, Tamainot-Telto Z (2012) Development of thermal conductive consolidated activated carbon for adsorption refrigeration. Carbon 50:977–986

    Article  Google Scholar 

  29. Bao H, Wang Y, Roskilly AP (2014) Modelling of a chemisorption refrigeration and power cogeneration system. Appl Energy 119:351–362

    Article  Google Scholar 

  30. Bao H, Wang Y, Charalambous C, Lu Z, Wang L, Wang R et al (2014) Chemisorption cooling and electric power cogeneration system driven by low grade heat. Energy 72:590–598

    Article  Google Scholar 

  31. Lemort V, Quoilin S, Cuevas C, Lebrun J (2009) Testing and modeling a scroll expander integrated into an organic rankine cycle. Appl Therm Eng 29:3094–3102

    Article  Google Scholar 

  32. Qiu G, Liu H, Riffat S (2011) Expanders for micro-CHP systems with organic rankine cycle. Appl Therm Eng 31:3301–3307

    Article  Google Scholar 

  33. Quoilin S, Lemort V, Lebrun J (2010) Experimental study and modeling of an organic rankine cycle using scroll expander. Appl Energy 87:1260–1268

    Article  Google Scholar 

  34. Aoun B, Clodic DF (2008) Theoretical and experimental study of an oil-free scroll vapor expander, Purdue University

    Google Scholar 

  35. Wang W, Qu TF, Wang RZ (2002) Influence of degree of mass recovery and heat regeneration on adsorption refrigeration cycles. Energy Convers Manage 43:733–741

    Article  Google Scholar 

  36. Lu ZS, Wang LW, Wang RZ (2012) Experimental analysis of an adsorption refrigerator with mass and heat-pipe heat recovery process. Energy Convers Manage 53:291–297

    Article  Google Scholar 

  37. Ng KC, Wang X, Lim YS, Saha BB, Chakarborty A, Koyama S et al (2006) Experimental study on performance improvement of a four-bed adsorption chiller by using heat and mass recovery. Int J Heat Mass Transf 49:3343–3348

    Article  Google Scholar 

  38. Srivastava NC, Eames IW (1998) A review of adsorbents and adsorbates in solid-vapour adsorption heat pump systems. Appl Therm Eng 18:707–714

    Article  Google Scholar 

  39. Tamainot-Telto Z, Metcalf SJ, Critoph RE, Zhong Y, Thorpe R (2009) Carbon-ammonia pairs for adsorption refrigeration applications: ice making, air conditioning and heat pumping. Int J Refrig 32:1212–1229

    Article  Google Scholar 

  40. Jiang L, Wang LW, Roskilly AP, Wang RZ (2013) Design and performance analysis of a resorption cogeneration system. Int J Low-Carbon Technol 8:i85–i91

    Article  Google Scholar 

  41. Bao H, Ma Z, Roskilly AP (2016) An optimised chemisorption cycle for power generation using low grade heat. Appl Energy 186:251–261

    Article  Google Scholar 

  42. Wang L, Ziegler F, Roskilly AP, Wang R, Wang Y (2013) A resorption cycle for the cogeneration of electricity and refrigeration. Appl Energy 106:56–64

    Article  Google Scholar 

  43. Lépinasse E, Marion M, Goetz V (2001) Cooling storage with a resorption process: application to a box temperature control. Appl Therm Eng 21:1251–1263

    Article  Google Scholar 

  44. Vasiliev LL, Mishkinis DA, Antukh AA, Kulakov AG, Vasiliev LL (2004) Resorption heat pump. Appl Therm Eng 24:1893–1903

    Article  Google Scholar 

  45. Jin ZQ, Wang LW, Jiang L, Wang RZ (2013) Experiment on the thermal conductivity and permeability of physical and chemical compound adsorbents for sorption process. Heat Mass Transf 49:1117–1124

    Article  Google Scholar 

  46. Lu HB, Mazet N, Spinner B (1996) Modelling of gas-solid reaction—coupling of heat and mass transfer with chemical reaction. Chem Eng Sci 51:3829–3845

    Article  Google Scholar 

  47. Wang R, Wang L, Wu J (2014) Adsorption refrigeration technology: theory and application. Wiley

    Google Scholar 

  48. Vijayaraghavan S, Goswami DY (2003) On evaluating efficiency of a combined power and cooling cycle. J Energy Res Technol 125:534–547

    Article  Google Scholar 

  49. Bianchi M, Pascale AD (2011) Bottoming cycles for electric energy generation: parametric investigation of available and innovative solutions for the exploitation of low and medium temperature heat sources. Appl Energy 88:1500–1509

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Liwei Wang .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Wang, L., An, G., Gao, J., Wang, R. (2021). Solid Sorption Cycle for Energy Storage, Electricity Generation and Cogeneration. In: Property and Energy Conversion Technology of Solid Composite Sorbents. Engineering Materials. Springer, Singapore. https://doi.org/10.1007/978-981-33-6088-4_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-6088-4_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-6087-7

  • Online ISBN: 978-981-33-6088-4

  • eBook Packages: EnergyEnergy (R0)

Publish with us

Policies and ethics