Skip to main content

Development and Classification of Functional Carbohydrate Processing Enzymes in the Food Industry

  • Chapter
  • First Online:
Novel enzymes for functional carbohydrates production
  • 493 Accesses

Abstract

In nowadays society, with the increasing requirements for nutrition, people pay more attention to the functionality of food. The latest trend in food industry is the development of functional foods such as prebiotics and low-calorie sweeteners. Enzymes have strength not only in catalytic efficiency but also in chemoselectivity, regioselectivity, and stereoselectivity, which makes enzymatic reactions more precise, efficient, and reproducible than chemical methods. Functional carbohydrates can be produced enzymatically through polymerization, isomerization, transglycosylation, or oxidation/reduction reactions. In this chapter, the development and classification of the functional carbohydrate processing enzymes are discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • André I, Potocki-Véronese G, Morel S, Monsan P, Remaud-Siméon M (2010) Sucrose-utilizing transglucosidases for biocatalysis. In: Carbohydrates in sustainable development I. Springer, Cham, pp 25–48

    Chapter  Google Scholar 

  • Barski OA, Tipparaju SM, Bhatnagar A (2008) The aldo-keto reductase superfamily and its role in drug metabolism and detoxification. Drug Metab Rev 40(4):553–624. https://doi.org/10.1080/03602530802431439

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Bhuiyan SH, Itami Y, Takada G, Izumori K (1999) Preparation of l-talose and d-gulose from l-tagatose and d-sorbose, respectively, using immobilized l-Rhamnose Isomerase. J Biosci Bioeng 88(5):567–570. https://doi.org/10.1016/S1389-1723(00)87677-X

    Article  CAS  PubMed  Google Scholar 

  • Cantarel BL, Coutinho PM, Rancurel C, Bernard T, Lombard V, Henrissat B (2009) The carbohydrate-active enzymes database (CAZy): an expert resource for glycogenomics. Nucleic Acids Res 37(suppl_1):D233–D238

    Article  CAS  Google Scholar 

  • Chen S, Li Z, Gu Z, Hong Y, Cheng L, Holler TP, Li C (2018) Leu600 mutations decrease product inhibition of the β-cyclodextrin glycosyltransferase from Bacillus circulans STB01. Int J Biol Macromol 115:1194–1201

    Article  CAS  Google Scholar 

  • Chen Z, Tian Y, Zhang W, Guang C, Meng X, Mu W (2019) Novel dextransucrase Gtf-DSM, highly similar in sequence to reuteransucrase GtfO, displays unique product specificity. J Agric Food Chem 67(46):12806–12815

    Article  CAS  Google Scholar 

  • Cheng Y, Yu S, Zhu Y, Zhang T, Jiang B, Mu W (2017) Formation of di-d-fructofuranose-1, 2′: 2, 1′-dianhydride by three novel inulin fructotransferases from the Nocardiaceae family. Process Biochem 62:106–113

    Article  CAS  Google Scholar 

  • Cohen SN, Chang AC, Boyer HW, Helling RB (1973) Construction of biologically functional bacterial plasmids in vitro. Proc Natl Acad Sci 70(11):3240–3244

    Article  CAS  Google Scholar 

  • Granström TB, Takata G, Morimoto K, Leisola M, Izumori K (2005) L-Xylose and L-lyxose production from xylitol using Alcaligenes 701B strain and immobilized L-rhamnose isomerase enzyme. Enzym Microb Technol 36(7):976–981

    Article  Google Scholar 

  • Henrissat B (1991) A classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 280(2):309–316

    Article  CAS  Google Scholar 

  • Henrissat B, Bairoch A (1993) New families in the classification of glycosyl hydrolases based on amino acid sequence similarities. Biochem J 293(3):781–788

    Article  CAS  Google Scholar 

  • Henrissat B, Bairoch A (1996) Updating the sequence-based classification of glycosyl hydrolases. Biochem J 316(2):695–696

    Article  Google Scholar 

  • Henrissat B, Romeu A (1995) Families, superfamilies and subfamilies of glycosyl hydrolases. Biochem J 311(1):350–351

    Article  CAS  Google Scholar 

  • Henrissat B, Claeyssens M, Tomme P, Lemesle L, Mornon J-P (1989) Cellulase families revealed by hydrophobic cluster analysi. Gene 81(1):83–95

    Article  CAS  Google Scholar 

  • Izumori K (2006) Izumoring: a strategy for bioproduction of all hexoses. J Biotechnol 124(4):717–722. https://doi.org/10.1016/j.jbiotec.2006.04.016

    Article  CAS  PubMed  Google Scholar 

  • James JA, Lee BH (1997) Glucoamylases: microbial sources, industrial applications and molecular biology—a review. J Food Biochem 21(6):1–52

    Article  CAS  Google Scholar 

  • Leang K, Maekawa K, Menavuvu BT, Morimoto K, Granström TB, Takada G, Izumori K (2004) A novel enzymatic approach to the massproduction of L-galactose from L-sorbose. J Biosci Bioeng 97(6):383–388

    Article  CAS  Google Scholar 

  • Li Y, Li C, Gu Z, Cheng L, Hong Y, Li Z (2019) Digestion properties of corn starch modified by α-D-glucan branching enzyme and cyclodextrin glycosyltransferase. Food Hydrocoll 89:534–541

    Article  CAS  Google Scholar 

  • Lin C-J, Tseng W-C, Fang T-Y (2011) Characterization of a thermophilic L-rhamnose isomerase from Caldicellulosiruptor saccharolyticus ATCC 43494. J Agric Food Chem 59(16):8702–8708

    Article  CAS  Google Scholar 

  • Liu X, Li Z, Chen Z, Wang N, Gao Y, Nakanishi H, Gao X-D (2019) Production of l-ribulose using an encapsulated l-arabinose isomerase in yeast spores. J Agric Food Chem 67(17):4868–4875

    Article  CAS  Google Scholar 

  • Lu F, Xu W, Zhang W, Guang C, Mu W (2019) Polyol dehydrogenases: intermediate role in the bioconversion of rare sugars and alcohols. Appl Microbiol Biotechnol 103(16):6473–6481. https://doi.org/10.1007/s00253-019-09980-z

    Article  CAS  PubMed  Google Scholar 

  • Mu W, Jiang B, Shuhuai Y, Zhu Y, Zhang T (2019) Highly efficient method for synthesizing difructose anhydride III. Google Patents

    Google Scholar 

  • Ni D, Xu W, Zhu Y, Zhang W, Zhang T, Guang C, Mu W (2019) Inulin and its enzymatic production by inulosucrase: characteristics, structural features, molecular modifications and applications. Biotechnol Adv 37(2):306–318. https://doi.org/10.1016/j.biotechadv.2019.01.002

    Article  CAS  PubMed  Google Scholar 

  • Nidetzky B, Gutmann A, Zhong C (2018) Leloir glycosyltransferases as biocatalysts for chemical production. ACS Catal 8(7):6283–6300. https://doi.org/10.1021/acscatal.8b00710

    Article  CAS  Google Scholar 

  • Park C-S (2014) Characterization of a recombinant L-rhamnose isomerase from Bacillus subtilis and its application on production of L-lyxose and L-mannose. Biotechnol Bioprocess Eng 19(1):18–25

    Article  CAS  Google Scholar 

  • Petrash JM (2004) All in the family: aldose reductase and closely related aldo-keto reductases. Cell Mol Life Sci 61(7-8):737–749. https://doi.org/10.1007/s00018-003-3402-3

    Article  CAS  PubMed  Google Scholar 

  • Robinson PK (2015) Enzymes: principles and biotechnological applications. Essays Biochem 59:1–41. https://doi.org/10.1042/bse0590001

    Article  PubMed  PubMed Central  Google Scholar 

  • Singh S, Bajaj BK (2017) Potential application spectrum of microbial proteases for clean and green industrial production. Energy Ecol Environ 2(6):370–386. https://doi.org/10.1007/s40974-017-0076-5

    Article  Google Scholar 

  • Souza PMD (2010) Application of microbial α-amylase in industry-A review. Braz J Microbiol 41(4):850–861

    Article  Google Scholar 

  • Sumner JB (1926) The isolation and crystallization of the enzyme urease preliminary paper. J Biol Chem 69(2):435–441

    Article  CAS  Google Scholar 

  • Tian Y, Xu W, Zhang W, Zhang T, Guang C, Mu W (2018) Amylosucrase as a transglucosylation tool: From molecular features to bioengineering applications. Biotechnol Adv 36(5):1540–1552. https://doi.org/10.1016/j.biotechadv.2018.06.010

    Article  CAS  PubMed  Google Scholar 

  • Tien-Kieu N, Moon-Gi H, Pahn-Shick C, Byung-Hoo L, Sang-Ho Y, Martins LO (2018) Biochemical properties of L-arabinose isomerase from Clostridium hylemonae to produce D-tagatose as a functional sweetener. PLoS One 13(4):e0196099

    Article  Google Scholar 

  • Torres DPM, Gonçalves MDPF, Teixeira JA, Rodrigues LR (2010) Galacto-oligosaccharides: production, properties, applications, and significance as prebiotics. Compr Rev Food Sci Food Saf 9(5):438–454. https://doi.org/10.1111/j.1541-4337.2010.00119.x

    Article  CAS  PubMed  Google Scholar 

  • Van Hijum SAFT, Kralj S, Ozimek LK, Dijkhuizen L, Van Geel-Schutten IGH (2006) Structure-function relationships of glucansucrase and fructansucrase enzymes from lactic acid bacteria. Microbiol Mol Biol Rev 70(1):157–176. https://doi.org/10.1128/mmbr.70.1.157-176.2006

    Article  PubMed  PubMed Central  Google Scholar 

  • Wang L, Duan X, Wu J (2016) Enhancing the α-cyclodextrin specificity of cyclodextrin glycosyltransferase from paenibacillus macerans by mutagenesis masking subsite 7. Appl Environ Microbiol 82(8):2247–2255

    Article  CAS  Google Scholar 

  • Webb EC (1992) Enzyme nomenclature 1992. Recommendations of the Nomenclature Committee of the International Union of Biochemistry and Molecular Biology on the Nomenclature and Classification of Enzymes, vol 6. Academic, New York

    Google Scholar 

  • Xu Z, Li S, Feng X, Liang J, Xu H (2014) L-Arabinose isomerase and its use for biotechnological production of rare sugars. Appl Microbiol Biotechnol 98(21):8869–8878

    Article  CAS  Google Scholar 

  • Xu W, Ni D, Zhang W, Guang C, Zhang T, Mu W (2019) Recent advances in levansucrase and inulosucrase: evolution, characteristics, and application. Crit Rev Food Sci Nutr 59(22):3630–3647. https://doi.org/10.1080/10408398.2018.1506421

    Article  CAS  PubMed  Google Scholar 

  • Yu S, Zhu Y, Zhang T, Jiang B, Mu W (2016) Facile enzymatic production of difructose dianhydride III from sucrose. RSC Adv 6(105):103791–103794. https://doi.org/10.1039/c6ra23352j

    Article  CAS  Google Scholar 

  • Zhang W, Yu S, Zhang T, Jiang B, Mu W (2016) Recent advances in d-allulose: physiological functionalities, applications, and biological production. Trends Food Sci Technol 54:127–137. https://doi.org/10.1016/j.tifs.2016.06.004

    Article  CAS  Google Scholar 

  • Zhang W, Zhang T, Jiang B, Mu W (2017) Enzymatic approaches to rare sugar production. Biotechnol Adv 35(2):267–274. https://doi.org/10.1016/j.biotechadv.2017.01.004

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Wanmeng Mu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mu, W., Chen, Q. (2021). Development and Classification of Functional Carbohydrate Processing Enzymes in the Food Industry. In: Mu, W., Zhang, W., Chen, Q. (eds) Novel enzymes for functional carbohydrates production. Springer, Singapore. https://doi.org/10.1007/978-981-33-6021-1_1

Download citation

Publish with us

Policies and ethics