Skip to main content

Application of Enzymes in Bioremediation of Contaminated Hydrosphere and Soil Environment

  • Chapter
  • First Online:
Bioprospecting of Enzymes in Industry, Healthcare and Sustainable Environment

Abstract

Due to the ever-increasing global population, industrial sector is growing at a rapid rate which is leading to increase in discharge of hazardous and harmful substances in the environment. Enzymes play an important role in the management of environment by detoxifying or transforming harmful substances into useful products. A variety of enzymes have been isolated from bacteria, fungi, and plants having a wider application in degradation and/or transformation of toxic environmental pollutants. They have been used either in isolated or in bound form for the decontamination of water and soil contaminated with organic (pesticides, polyaromatic hydrocarbons, polycyclic biphenyls, etc.) and inorganic (heavy metals and radionuclides) pollutants. Enzymes that belong to oxidoreductase group detoxify the aromatic compounds through polymerization and co-polymerization with other substrates. This group includes oxygenases, microbial laccases, and peroxidases. Apart from the aromatic compounds, heavy metals can also accumulate in the environment that leads to serious health problem because of their lyophilic, persistent, and toxic nature. For example, hexavalent species of chromium is more toxic than its trivalent species. Chromate reductase can convert the Cr6+ to Cr3+ which is more insoluble in water. This chapter presents an overview of application of different enzymes in waste water treatment and remediation of contaminated soil, sludge, and water.

Sanchita Gupta was deceased at the time of publication.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abdullah SHYS, Hanapi NHM, Azid A, Umar R, Juahir H, Khatoon H, Endut A (2017) A review of biomass-derived heterogeneous catalyst for a sustainable biodiesel production. Renew Sust Energ Rev 70:1040–1051

    Google Scholar 

  • Açıkel Ãœ, ErÅŸan M (2010) Acid phosphatase production by Rhizopus delemar: a role played in the Ni (II) bioaccumulation process. J Hazard Mater 184(1–3):632–639

    Article  PubMed  CAS  Google Scholar 

  • Aitken MD (1993) Waste treatment applications of enzymes: opportunities and obstacles. Chem Eng J 52(2):B49–B58

    Article  CAS  Google Scholar 

  • Alcalde M, Ferrer M, Plou FJ, Ballesteros A (2006) Environmental biocatalysis: from remediation with enzymes to novel green processes. Trends Biotechnol 24(6):281–287

    Article  CAS  PubMed  Google Scholar 

  • Allocati N, Federici L, Masulli M, Di Ilio C (2009) Glutathione transferases in bacteria. FEBS J 276(1):58–75

    Article  CAS  PubMed  Google Scholar 

  • Appukuttan D, Rao AS, Apte SK (2006) Engineering of Deinococcus radiodurans R1 for bioprecipitation of uranium from dilute nuclear waste. Appl Environ Microbiol 72(12):7873–7878

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Arora PK, Srivastava A, Singh VP (2010) Application of monooxygenases in dehalogenation, desulphurization, denitrification and hydroxylation of aromatic compounds. J Bioremed Biodegr 1:112. https://doi.org/10.4172/2155-6199.1000112

    Article  CAS  Google Scholar 

  • Asgher M, Bhatti HN, Ashraf M, Legge RL (2008) Recent developments in biodegradation of industrial pollutants by white rot fungi and their enzyme system. Biodegradation 19(6):771

    Article  CAS  PubMed  Google Scholar 

  • Ayangbenro AS, Babalola OO (2017) A new strategy for heavy metal polluted environments: a review of microbial biosorbents. Int J Environ Res Public Health 14(1):94

    Article  PubMed Central  CAS  Google Scholar 

  • Baborová P, Möder M, Baldrian P, Cajthamlová K, Cajthaml T (2006) Purification of a new manganese peroxidase of the white-rot fungus Irpex lacteus, and degradation of polycyclic aromatic hydrocarbons by the enzyme. Res Microbiol 157(3):248–253

    Article  PubMed  CAS  Google Scholar 

  • Barak Y, Ackerley DF, Dodge CJ, Banwari L, Alex C, Francis AJ, Matin A (2006) Analysis of novel soluble chromate and uranyl reductases and generation of an improved enzyme by directed evolution. Appl Environ Microbiol 72(11):7074–7082

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Behbahani M, Mohabatkar H, Nosrati M (2016) Analysis and comparison of lignin peroxidases between fungi and bacteria using three different modes of Chou’s general pseudo amino acid composition. J Theor Biol 411:1–5

    Article  CAS  PubMed  Google Scholar 

  • Chaturvedi V, Kumar A (2010) Bacterial utilization of sodium dodecyl sulfate. Int J Appl Biol Pharmaceut Tech 1:1126–1131

    Google Scholar 

  • Chaturvedi V, Kumar A (2011) Diversity of culturable sodium dodecyl sulfate (SDS) degrading bacteria isolated from detergent contaminated ponds situated in Varanasi city, India. Int Biodeterior Biodegradation 65(7):961–971

    Article  CAS  Google Scholar 

  • Chaudhuri G, Shah GA, Dey P, Venu-Babu P, Thilagaraj WR (2013) Enzymatically mediated bioprecipitation of heavy metals from industrial wastes and single ion solutions by mammalian alkaline phosphatase. J Environ Sci Health A 48(1):79–85

    Article  CAS  Google Scholar 

  • Christian V, Shrivastava R, Shukla D, Modi HA, Vyas BRM (2005) Degradation of xenobiotic compounds by lignin-degrading white-rot fungi: enzymology and mechanisms involved. Indian J Exp Biol 43(4):301–312

    CAS  PubMed  Google Scholar 

  • Christopher LP, Yao B, Ji Y (2014) Lignin biodegradation with laccase-mediator systems. Front Energy Res 2:12

    Article  Google Scholar 

  • Comte A, Christen P, Davidson S, Pophillat M, Lorquin J, Auria R, Simon G, Casalot L (2013) Biochemical, transcriptional and translational evidences of the phenol-meta-degradation pathway by the hyperthermophilic Sulfolobus solfataricus 98/2. PLoS One 8(12)

    Google Scholar 

  • Cowan DA, Fernandez-Lafuente R (2011) Enhancing the functional properties of thermophilic enzymes by chemical modification and immobilization. Enzym Microb Technol 49(4):326–346

    Article  CAS  Google Scholar 

  • Cummins I, Dixon DP, Freitag-Pohl S, Skipsey M, Edwards R (2011) Multiple roles for plant glutathione transferases in xenobiotic detoxification. Drug Metab Rev 43(2):266–280

    Article  CAS  PubMed  Google Scholar 

  • Das P, Sarkar D, Makris KC, Datta R (2015) Urea-facilitated uptake and nitroreductase-mediated transformation of 2, 4, 6-trinitrotoluene in soil using vetiver grass. J Environ Chem Eng 3(1):445–452

    Article  CAS  Google Scholar 

  • de Gonzalo G, Colpa DI, Habib MH, Fraaije MW (2016) Bacterial enzymes involved in lignin degradation. J Biotechnol 236:110–119

    Article  PubMed  CAS  Google Scholar 

  • Dec J, Bollag JM (2001) Use of enzymes in bioremediation. Pesticide biotransformation in plants and microorganisms Chapter 10, pp 182–193

    Google Scholar 

  • Deng S, Chen Y, Wang D, Shi T, Wu X, Ma X, Li X, Hua R, Tang X, Li QX (2015) Rapid biodegradation of organophosphorus pesticides by Stenotrophomonas sp. G1. J Hazard Mater 297:17–24

    Article  CAS  PubMed  Google Scholar 

  • Dixon DP, Skipsey M, Edwards R (2010) Roles for glutathione transferases in plant secondary metabolism. Phytochemistry 71(4):338–350

    Article  CAS  PubMed  Google Scholar 

  • Duran N, Esposito E (2000) Potential applications of oxidative enzymes and phenoloxidase-like compounds in wastewater and soil treatment: a review. Appl Catal B Environ 28(2):83–99

    Article  CAS  Google Scholar 

  • Eibes G, Cajthaml T, Moreira MT, Feijoo G, Lema JM (2006) Enzymatic degradation of anthracene, dibenzothiophene and pyrene by manganese peroxidase in media containing acetone. Chemosphere 64(3):408–414

    Article  CAS  PubMed  Google Scholar 

  • Emenike CU, Jayanthi B, Agamuthu P, Fauziah SH (2018) Biotransformation and removal of heavy metals: a review of phytoremediation and microbial remediation assessment on contaminated soil. Environ Rev 26(2):156–168

    Article  CAS  Google Scholar 

  • Enayati AA, Ranson H, Hemingway J (2005) Insect glutathione transferases and insecticide resistance. Insect Mol Biol 14(1):3–8

    Article  CAS  PubMed  Google Scholar 

  • Fan CY, Krishnamurthy S (1995) Enzymes for enhancing bioremediation of petroleum-contaminated soils: a brief review. J Air Waste Manage Assoc 45(6):453–460

    Article  CAS  Google Scholar 

  • Fox RD (1996) Physical/chemical treatment of organically contaminated soils and sediments. J Air Waste Manage Assoc 46(5):391–413

    Article  CAS  Google Scholar 

  • Garcia-Arellano H, Alcalde M, Ballesteros A (2004) Use and improvement of microbial redox enzymes for environmental purposes. Microb Cell Fact 3(1):10

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Gurung N, Ray S, Bose S, Rai V (2013) A broader view: microbial enzymes and their relevance in industries, medicine, and beyond. BioMed Res Int 2013:329121

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Hannink NK, Subramanian M, Rosser SJ, Basran A, Murray JA, Shanks JV, Bruce NC (2007) Enhanced transformation of TNT by tobacco plants expressing a bacterial nitroreductase. Int J Phytoremediation 9(5):385–401

    Article  CAS  PubMed  Google Scholar 

  • Hayes JD, Flanagan JU, Jowsey IR (2005) Glutathione transferases. Annu Rev Pharmacol Toxicol 45:51–88

    Article  CAS  PubMed  Google Scholar 

  • Hofrichter M, Ullrich R, Pecyna MJ, Liers C, Lundell T (2010) New and classic families of secreted fungal heme peroxidases. Appl Microbiol Biotechnol 87(3):871–897

    Article  CAS  PubMed  Google Scholar 

  • Jurado M, Martinèz ÀT, Martinez MJ, Saparrat MCN (2011) Application of white-rot fungi in transformation, detoxification, or revalorization of agriculture wastes. Compr Biotechnol 6:595–603

    Google Scholar 

  • Kadri T, Rouissi T, Brar SK, Cledon M, Sarma S, Verma M (2017) Biodegradation of polycyclic aromatic hydrocarbons (PAHs) by fungal enzymes: a review. J Environ Sci 51:52–74

    Article  CAS  Google Scholar 

  • Karam J, Nicell JA (1997) Potential applications of enzymes in waste treatment. J Chem Technol Biotechnol 69(2):141–153

    Article  CAS  Google Scholar 

  • Karigar CS, Rao SS (2011) Role of microbial enzymes in the bioremediation of pollutants: a review. Enzyme Res 2011:805187

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kudanga T, Burton S, Nyanhongo GS, Guebitz GM (2012) Versatility of oxidoreductases in the remediation of environmental pollutants. Front Biosci 4:1127–1149

    Article  Google Scholar 

  • Kües U (2015) Fungal enzymes for environmental management. Curr Opin Biotechnol 33:268–278

    Article  PubMed  CAS  Google Scholar 

  • Kuhad RC, Gupta R, Singh A (2011) Microbial cellulases and their industrial applications. Enzyme Res 2011:280696

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Kushwaha A, Hans N, Kumar S, Rani R (2018) A critical review on speciation, mobilization and toxicity of lead in soil-microbe-plant system and bioremediation strategies. Ecotoxicol Environ Saf 147:1035–1045

    Article  CAS  PubMed  Google Scholar 

  • Labade CP, Jadhav AR, Ahire M, Zinjarde SS, Tamhane VA (2018) Role of induced glutathione-S-transferase from Helicoverpa armigera (Lepidoptera: Noctuidae) HaGST-8 in detoxification of pesticides. Ecotoxicol environ saf 147:612–621

    Google Scholar 

  • Lee DH, Choi SL, Rha E, Kim SJ, Yeom SJ, Moon JH, Lee SG (2015) A novel psychrophilic alkaline phosphatase from the metagenome of tidal flat sediments. BMC Biotechnol 15(1):1

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Martínková L, Veselá AB, Rinágelová A, Chmátal M (2015) Cyanide hydratases and cyanide dihydratases: emerging tools in the biodegradation and biodetection of cyanide. Appl Microbiol Biotechnol 99(21):8875–8882

    Article  PubMed  CAS  Google Scholar 

  • May SW (1999) Applications of oxidoreductases. Curr Opin Biotechnol 10(4):370–375

    Article  CAS  PubMed  Google Scholar 

  • Nilgiriwala KS, Bihani SC, Das A, Prashar V, Kumar M, Ferrer JL, Apte SK, Hosur MV (2009) Crystallization and preliminary X-ray crystallographic analysis of PhoK, an extracellular alkaline phosphatase from Sphingomonas sp. BSAR-1. Acta Crystallogr Sect F: Struct Biol Cryst Commun 65(9):917–919

    Article  CAS  Google Scholar 

  • Nunes CS, Malmlöf K (2018) Enzymatic decontamination of antimicrobials, phenols, heavy metals, pesticides, polycyclic aromatic hydrocarbons, dyes, and animal waste. In: Enzymes in human and animal nutrition. Academic Press, London, pp 331–359

    Chapter  Google Scholar 

  • Oakley A (2011) Glutathione transferases: a structural perspective. Drug Metab Rev 43(2):138–151

    Article  CAS  PubMed  Google Scholar 

  • Okino-Delgado CH, Do Prado DZ, Facanali R, Marques MMO, Nascimento AS, da Costa Fernandes CJ, Zambuzzi WF, Fleuri LF (2017) Bioremediation of cooking oil waste using lipases from wastes. PLoS One 12(10):e0186246

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Pawar VC, Thaker VS (2009) Acid phosphatase and invertase activities of Aspergillus Niger. Mycoscience 50(5):323–330

    Article  CAS  Google Scholar 

  • Piccolo C, Wiman M, Bezzo F, Lidén G (2010) Enzyme adsorption on SO2 catalyzed steam-pretreated wheat and spruce material. Enzym Microb Technol 46(3–4):159–169

    Google Scholar 

  • Rafii F, Hehman GL, Shahverdi AR (2005) Factors affecting nitroreductase activity in the biological reduction of nitro compounds. Curr Enzym Inhib 1(3):223–230

    Article  Google Scholar 

  • Rinágelová A, Kaplan O, Veselá AB, Chmátal M, KÅ™enková A, Plíhal O, Pasquarelli F, Cantarella M, Martínková L (2014) Cyanide hydratase from Aspergillus Niger K10: overproduction in Escherichia coli, purification, characterization and use in continuous cyanide degradation. Process Biochem 49(3):445–450

    Article  CAS  Google Scholar 

  • Ruiz-Duenas FJ, Morales M, García E, Miki Y, Martínez MJ, Martínez AT (2009) Substrate oxidation sites in versatile peroxidase and other basidiomycete peroxidases. J Exp Bot 60(2):441–452

    Article  CAS  PubMed  Google Scholar 

  • Rylott EL, Bruce NC (2009) Plants disarm soil: engineering plants for the phytoremediation of explosives. Trends Biotechnol 27(2):73–81

    Article  CAS  PubMed  Google Scholar 

  • Rylott EL, Lorenz A, Bruce NC (2011) Biodegradation and biotransformation of explosives. Curr Opin Biotechnol 22(3):434–440

    Article  CAS  PubMed  Google Scholar 

  • Serdar CM, Gibson DT (1985) Enzymatic hydrolysis of organophosphates: cloning and expression of a parathion hydrolase gene from Pseudomonas diminuta. Bio/Technology 3(6):567–571

    CAS  Google Scholar 

  • Shraddha S, Rakesh V, Savita D, Praveen J (2011) Evaluation of water quality of Narmada river with reference to physco-chemical parameters at Hoshangabad city, MP, India. Evaluation, 1, 3

    Google Scholar 

  • Thatoi H, Das S, Mishra J, Rath BP, Das N (2014) Bacterial chromate reductase, a potential enzyme for bioremediation of hexavalent chromium: a review. J Environ Manag 146:383–399

    Article  CAS  Google Scholar 

  • Toesch M, Schober M, Faber K (2014) Microbial alkyl-and aryl-sulfatases: mechanism, occurrence, screening and stereoselectivities. Appl Microbiol Biotechnol 98(4):1485–1496

    Article  CAS  PubMed  Google Scholar 

  • Van Beilen JB, Funhoff EG (2007) Alkane hydroxylases involved in microbial alkane degradation. Appl Microbiol Biotechnol 74(1):13–21

    Article  CAS  PubMed  Google Scholar 

  • Wuana RA, Okieimen FE (2011) Heavy metals in contaminated soils: a review of sources, chemistry, risks and best available strategies for remediation. ISRN Ecol 2011:402647

    Google Scholar 

  • Yang W, Zhou YF, Dai HP, Bi LJ, Zhang ZP, Zhang XH, Leng Y, Zhang XE (2008) Application of methyl parathion hydrolase (MPH) as a labeling enzyme. Anal Bioanal Chem 390(8):2133–2140

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgments

The support by UGC in the form of fellowship to Sanchita Gupta is gratefully acknowledged.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Radha Rani .

Editor information

Editors and Affiliations

Additional information

Dedication

The authors dedicate this chapter in fond remembrance of Sanchita Gupta, who left fingerprints of grace on our lives.

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive licence to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gupta, S., Dangi, L., Patra, J.K., Rani, R. (2021). Application of Enzymes in Bioremediation of Contaminated Hydrosphere and Soil Environment. In: Thatoi, H., Mohapatra, S., Das, S.K. (eds) Bioprospecting of Enzymes in Industry, Healthcare and Sustainable Environment. Springer, Singapore. https://doi.org/10.1007/978-981-33-4195-1_1

Download citation

Publish with us

Policies and ethics