Skip to main content

Friction Stir Additive Manufacturing—A Review

  • Conference paper
  • First Online:
Recent Advances in Mechanical Infrastructure

Abstract

Aerospace and automobiles provide a great potential to the development of metal additive manufacturing. Most of these techniques are fusion based and face the drawback of solidification issues and are not applicable for every alloy. Friction stir additive manufacturing (FSAM) is a family of novel techniques that utilizes friction stir welding principle for layer-by-layer additive manufacturing of materials. This technology is revered to be a breakthrough in the field of metal additive manufacturing (MAM) due to the advantages of solid-state welding which are intrinsic to these processes. The paper highlights the recent developments in the much uncharted field of friction stir additive manufacturing, introduces the major technologies of the FSAM and underscores the advantages of FSAM over its fusion-based counterparts. The paper also throws a light on the outlook and the potential of FSAM technologies in the domain of industrial manufacturing. The paper sums up by presenting some of the noteworthy research works done in this field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Emmelmann C, Kranz J, Herzog D, Wycisk E (2013) Laser additive manufacturing of metals. In: Schmidt V, Belegratis MR (eds) Laser technology in biomimetics. Springer, Heidelberg, p p143e161

    Google Scholar 

  2. Herzog D, Seyda V, Wycisk E, Emmelmann C (2016) Additive manufacturing of metals. Acta Mater 117:371–392. https://doi.org/10.1016/j.actamat.2016.07.019

    Article  Google Scholar 

  3. ASTM F2792 (2015) Standard terminology for additive manufacturing technologies. ASTM International, USA

    Google Scholar 

  4. Kranz J, Herzog D, Emmelmann C (2015) Design guidelines for laser additive manufacturing of lightweight structures in TiAl6V4. J Laser Appl 27:S14001. https://doi.org/10.2351/1.4885235

    Article  Google Scholar 

  5. Azam FI et al (2018) An in-depth review on direct additive manufacturing of metals. IOP Conf Ser Mater Sci Eng 328:012005

    Google Scholar 

  6. Wohlers T (2012) Wohlers report: additive manufacturing and 3D printing state of the industry. Annual worldwide progress report. Wohlers Associate Inc., Fort Collins, pp 1–287

    Google Scholar 

  7. Kruth JP, Leu MC, Nakagawa T (1998) Progress in additive manufacturing and rapid prototyping. Ann ClRP 47:525–540

    Article  Google Scholar 

  8. Kulkarni P, Marsan A, Dutta D (2000) A review of process planning techniques in layered manufacturing. Rapid Prototyping J 6:18–35

    Article  Google Scholar 

  9. Beaman JJ, Deckard CR (1990) Selective laser sintering with assisted powder handling. US patent no. 4938816

    Google Scholar 

  10. Rannar LE, Glad A, Gustafson CG (2007) Efficient cooling with tool inserts manufactured by electron beam melting. Rapid Prototyping J 13(3):128–135

    Article  Google Scholar 

  11. Kruth JP, Vandenbroucke B, van Vaerenbergh J, Naert I (2005) Rapid manufacturing of dental prostheses by means of selective laser sintering/melting. Proc AFPR S 4:176–186

    Google Scholar 

  12. Murr LE, Gaytan SM, Ramirez DA, Martinez E, Hernandez J, Amato KN, Shindo PW, Medina FR, Wicker RB (2012) Metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol 28(1):1–14

    Article  Google Scholar 

  13. Appleyard D (2015) Powering up on powder technology. Metal Powder Rep 70(6):285–289

    Article  Google Scholar 

  14. Guo N, Leu MC (2013) Additive manufacturing: technology, applications and research needs. Front Mech Eng 8:215–243

    Article  Google Scholar 

  15. Gibson I, Rosen D, Stucker B (2015) Additive manufacturing technologies; 3D printing, rapid prototyping, and direct digital manufacturing. Springer, New York, USA

    Book  Google Scholar 

  16. Wong KV, Hernandez A (2012) A review of additive manufacturing. Int Sch Res Netw (ISRN) Mech Eng 2012

    Google Scholar 

  17. Carroll BE, Palmer TA, Beese AM (2015) Anisotropic tensile behavior of Ti–6Al–4V components fabricated with directed energy deposition additive manufacturing. Acta Mater 87:309–320. https://doi.org/10.1016/j.actamat.2014.12.054

    Article  Google Scholar 

  18. King WE, Anderson AT, Ferencz RM, Hodge NE, Kamath C, Khairallah SA, Rubenchik AM (2015) Laser powder bed fusion additive manufacturing of metals; physics, computational, and materials challenges. Appl Phys Rev 2(4):041304. https://doi.org/10.1063/1.4937809

    Article  Google Scholar 

  19. DebRoy T, Wei HL, Zuback JS, Mukherjee T, Elmer JW, Milewski JO, Beese AM, Wilson-Heid A, De A, Zhang W (2018) Additive manufacturing of metallic components – process, structure and properties. Prog Mater Sci 92:112. https://doi.org/10.1016/j.pmatsci.2017.10.001

    Article  Google Scholar 

  20. Sames WJ, List FA, Pannala S, Dehoff RR, Babu SS (2016) The metallurgy and processing science of metal additive manufacturing. Int Mater Rev 61:315

    Article  Google Scholar 

  21. Frazier WE (2014) Metal additive manufacturing: a review. J Mater Eng Perform 23(6):1917–1928. https://doi.org/10.1007/s11665-014-0958-z

    Article  Google Scholar 

  22. He X, Mazumder J (2007) Transport phenomena during direct metal deposition. J Appl Phys 101:053113. https://doi.org/10.1063/1.2710780

    Article  Google Scholar 

  23. Agarwala M, Bourell D, Beaman J, Marcus H, Barlow J (1995) Direct selective laser sintering of metals. Rapid Prototyping J 1(1):26–36

    Article  Google Scholar 

  24. Kruth J-P, Mercelis P, Van Vaerenhergh J, Froyen L, Rombouts M (2005) Binding mechanisms in selective laser sintering and selective laser melting. Rapid Prototyping J 11(1):26–36. https://doi.org/10.1108/13552540510573365

    Article  Google Scholar 

  25. Murr LE, Gaytan SM, Ramirez DA, Martinez E, Hernandez J, Amato KN et al (2012) Invited review: metal fabrication by additive manufacturing using laser and electron beam melting technologies. J Mater Sci Technol 28(1):1–14

    Article  Google Scholar 

  26. Bartkowiak K, Ullrich S, Frick T, Schmidt M (2011) New developments of laser processing aluminium alloys via additive manufacturing technique. Phys Procedia 12:393–401

    Article  Google Scholar 

  27. Merz R, Prinz FB, Ramaswami K, Terk M, Weiss LE (2004) Shape deposition manufacturing. In: Proceedings solid freeform fabrication symposium. The University of Texas, Austin, pp 1–8

    Google Scholar 

  28. Taminger KMB, Hafley RA (2003) Electron beam freeform fabrication: a rapid metal deposition process. In: Proceedings of the third annual automotive composites conference, Troy, MI

    Google Scholar 

  29. Hybrid manufacturing technologies resources. https://www.hybridmanutech.com/resources.html. Last accessed on 2020/07/18

  30. Dilip JJS, Babu S, Varadha Rajan S, Rafi KH, Janaki Ram GD, Stucker BE (2013) Use of friction surfacing for additive manufacturing. Mater Manuf Process 28(2):189–194. https://doi.org/10.1080/10426914.2012.677912

    Article  Google Scholar 

  31. Gibson I, Rosen DW, Stucker BE (2010) Additive manufacturing technologies: rapid prototyping to direct digital manufacturing. Springer, New York

    Book  Google Scholar 

  32. Guo J (2014) Solid state welding processes in manufacturing welding process manufacturing, solid state welding processes. In: Handbook of manufacturing engineering and technology, pp 569–592. https://doi.org/10.1007/978-1-4471-4670-4_55

  33. White DR (2003) Ultrasonic consolidation of aluminium tooling. Adv Mater Process 161:64–65

    Google Scholar 

  34. Slattery KT (2008) Structural assemblies and preforms formed by linear friction welding. U.S. Patent # 7398911

    Google Scholar 

  35. Lequeu PH, Muzzolini R, Ehrstrom JC, Bron F, Maziarz R (2006) Powerpoint presentation on: high performance friction stir welded structures using advanced alloys. In: Aeromat conference, Seattle, WA

    Google Scholar 

  36. Baumann JA (2012) Technical report on: production of energy efficient preform structures. The Boeing Company, Huntington Beach, CA

    Book  Google Scholar 

  37. Palanivel S, Nelaturu P, Glass B, Mishra RS (2015) Friction stir additive manufacturing for high structural performance through microstructural control in an Mg based WE43 alloy. Mater Des 1980–2015(65):934–952. https://doi.org/10.1016/j.matdes.2014.09.082

    Article  Google Scholar 

  38. Arbegast WJ (2007). In: Mishra RS, Mahoney MW (eds) Friction stir welding and processing. ASM International, New York, pp 273–308

    Google Scholar 

  39. Kulekci MK, Esme U, Buldum B (2016) Critical analysis of friction stir-based manufacturing processes. Int J Adv Manuf Technol 85(5–8):1687–1712. https://doi.org/10.1007/s00170-015-8071-5

    Article  Google Scholar 

  40. Vilac P, Vidal C, Gandra J (2012) In: Ahmed Z (ed) Aluminium alloys—new trends in fabrication and applications. Intech Open Access Publisher, London, pp 159–197

    Google Scholar 

  41. Padhy GK, Wu CS, Gao S (2018) Friction stir based welding and processing technologies—processes, parameters, microstructures and applications: a review. J Mater Sci Technol 34(1):1–38. https://doi.org/10.1016/j.jmst.2017.11.029

    Article  Google Scholar 

  42. Thomas WM (2009) An investigation and study into friction stir welding of ferrous-based material. Ph.D. thesis, University of Bolton

    Google Scholar 

  43. Zhang YN, Cao X, Larose S, Wanjara P (2012) Review of tools for friction stir welding and processing. Can Metall Quart 51(3):250–261. https://doi.org/10.1179/1879139512y.0000000015

    Article  Google Scholar 

  44. Rowe CE, Thomas WM (2005) Advances in tooling materials for friction stirwelding. TWI and Cedar Metals Ltd. https://www.innovaltec.com/downloads/rowematcong.pdf

  45. Arora A, Mehta M, De A, DebRoy T (2012) Load bearing capacity of tool pin during friction stir welding. Int J Adv Manuf Technol 61(9–12):911–920. https://doi.org/10.1007/s00170-011-3759-7

    Article  Google Scholar 

  46. DebRoy T, De A, Bhadeshia HKDH, Manvatkar VD, Arora A (2010) Tool durability maps for friction stir welding of an aluminium alloy. Proc R Soc A 468:3552–3570. https://doi.org/10.1098/rspa.2012.0270

  47. Arora A, De A, DebRoy T (2011) Toward optimum friction stir welding tool shoulder diameter. Scr Mater 64(1):9–12. https://doi.org/10.1016/j.scriptamat.2010.08.052

    Article  Google Scholar 

  48. Mehta M, De A, DebRoy T (2014) Material adhesion and stresses on friction stir welding tool pins. Sci Technol Weld Join 19(6):534–540. https://doi.org/10.1179/1362171814Y.0000000221

    Article  Google Scholar 

  49. Buchibabu V, Reddy GM, De A (2017) Probing torque, traverse force and tool durability in friction stir welding of aluminum alloys. J Mater Process Technol 241:86–92. https://doi.org/10.1016/j.jmatprotec.2016.11.008

    Article  Google Scholar 

  50. Mishra RS, De PS, Kumar N (2014) Friction stir welding and processing. Springer International Publishing, Cham, pp 95–108

    Google Scholar 

  51. White D. Object consolidation employing friction joining. US patent, patent no.: US 6,457,629 B1

    Google Scholar 

  52. Lequeu PH, Muzzolini R, Ehrstrom JC, Bron F, Maziarz R (2006) High performance friction stir welded structures using advanced alloys (Powerpoint Presentation). In: Aeromat conference, Seattle

    Google Scholar 

  53. Miranda RM, Gandra J, Vilaca P (2014) Surface modification by solid state processing. Woodhead Publication Ltd, Copy right@ 2014. ISBN 978-0-85709-468-1

    Google Scholar 

  54. Klopstock H, Neelands AR (1941) An improved method of joining and welding metals. U.K. Patent No 572789

    Google Scholar 

  55. Badheka K, Badheka V (2017) Friction surfacing of aluminium on steel: an experimental approach. Mater Today Proc 4(9):9937–9941. https://doi.org/10.1016/j.matpr.2017.06.297

    Article  Google Scholar 

  56. Grainger S, Blunt J (1998) Engineering coatings—design and application, 2nd edn. Abington Publishing, Cambridge, UK

    Book  Google Scholar 

  57. Rivera OG, Allison PG, Jordon JB, Rodriguez OL, Brewer LN, McClelland Z et al (2017) Microstructures and mechanical behavior of Inconel 625 fabricated by solid-state additive manufacturing. Mater Sci Eng A 694:1–9. https://doi.org/10.1016/j.msea.2017.03.105

  58. Galvis JC, Oliveira PHF, Martins JP, Carvalho ALM (2018) Assessment of process parameters by friction surfacing on the double layer deposition. Mater Res 21(3):e20180051. https://doi.org/10.1590/1980-5373-mr-2018-0051

  59. Rafi KH, Janaki Ram GD, Phanikumar G, Prasad Rao K (2010) Friction surfaced tool steel (H13) coatings on low carbon steel: a study on the effects of process parameters on coating characteristics and integrity. Surf Coat Technol 205:232–242

    Article  Google Scholar 

  60. Puli R, Nandha Kumar E, Janaki Ram GD (2011) Microstructural characterization of friction surfaced martensitic stainless steel AISI 410 coatings. Trans Indian Inst Met 64(1–2):41–45

    Article  Google Scholar 

  61. Chandrasekaran M, Batchelor AW, Jana S (1998) Study of the interfacial phenomena during friction surfacing of mild steel with tool steel and inconel. J Mater Sci 33:2709–2717

    Article  Google Scholar 

  62. Bedford GM, Vitanov VI, Voutchkov II (2001) On the thermo-mechanical events during friction surfacing of high-speed steels. Surf Coat Technol 141:34–39

    Article  Google Scholar 

  63. Liu XM, Zou ZD, Zhang YH, Qu SY, Wang XH (2008) Transferring mechanism of the coating rod in friction surfacing. Surf Coat Technol 202:1889–1894

    Article  Google Scholar 

  64. Reddy GM, Prasad KS, Rao KS, Mohandas T (2011) Friction surfacing of titanium alloy with aluminium metal matrix composite. Surf Eng 27(2):92–98

    Article  Google Scholar 

  65. Yamashita Y, Fujita K (2001) Newly developed repairs on welded area of LWR stainless steel by friction surfacing. J Nucl Sci Technol 38:896–900

    Article  Google Scholar 

  66. Schultz JP, Creehan KD (2017) Fabrication tools for exerting normal forces on feedstock (US 9205578 B2)

    Google Scholar 

  67. Aeroprobe homepage. https://www.aeroprobe.com. Last accessed on 2020/07/18

  68. MELD. Aeroprobe Corporation. https://meldmanufacturing.com/. Last accessed on 2020/07/18

  69. Creehan K, Schultz J (2012) U.S. Patent No. 0279441 A1. Washington, DC

    Google Scholar 

  70. Aeroprobe resources. https://www.aeroprobe.com/aeroprobe-corporation-rebrands-additive-manufacturing-technology. Last accessed on 2020/07/18

  71. Schultz J, Creehan K (2014) U.S. Patent No. 8893954 B2. Washington, DC

    Google Scholar 

  72. Hardwick N, Cox C, Schultz J, Kandasamy K (2018) U.S. Patent No. 0361501 A1. Washington, DC

    Google Scholar 

  73. Image taken form 3dprint.com

    Google Scholar 

  74. Mishra RS, Ma ZY (2005) Friction stir welding and processing. Mater Sci Eng R 50:1–78

    Google Scholar 

  75. Hansen N (2004) Hall-Petch relation and boundary strengthening. Scr Mater 51:801–806. https://doi.org/10.1016/j.scriptamat.2004.06.002

    Article  Google Scholar 

  76. Cordero Z, Knight B, Schuh C (2016) Six decades of the Hall-Petch effect—a survey of grain-size strengthening studies on pure metals. Int Mater Rev 61:1–18. https://doi.org/10.1080/09506608.2016.1191808

    Article  Google Scholar 

  77. Palanivel S, Sidhar H, Mishra RS (2015) Friction stir additive manufacturing: route to high structural performance. JOM 67(3):616–621. https://doi.org/10.1007/s11837-014-1271-x

    Article  Google Scholar 

  78. Arbegast WJ (2008) A flow-partitioned deformation zone model for defect formation during friction stir welding. Scr Mater 58:372–376

    Article  Google Scholar 

  79. Colligan KJ, Mishra RS (2008) A conceptual model for the process variables related to heat generation in friction stir welding of aluminium. Scr Mater 58:327–331

    Article  Google Scholar 

  80. Padmanaban G, Balasubramanian V (2009) Selection of FSW tool pin profile, shoulder diameter and material for joining AZ31B magnesium alloy—an experimental approach. Mater Des 30:2647–2656

    Article  Google Scholar 

  81. Zhang H, Lin SB, Wu L, Feng JC, Ma ShL (2006) Defects formation procedure and mathematic model for defect free friction stir welding of magnesium alloy. Mater Des 27:805–809

    Article  Google Scholar 

  82. Chen YC, Nakata K (2009) Effect of tool geometry on microstructure and mechanical properties of friction stir lap welded magnesium alloy and steel. Mater Des 30:3913–3919

    Article  Google Scholar 

  83. Cao X, Jahazi M (2009) Effect of welding speed on the quality of friction stir welded butt joints of a magnesium alloy. Mater Des 30:2033–2042

    Article  Google Scholar 

  84. Baumers M, Tuck C, Wildman R, Ashcroft I, Hague R (2011) Energy inputs to additive manufacturing: does capacity utilization matter? EOS 1000(270):30–40

    Google Scholar 

  85. Palanivel S, Mishra RS (2017) Building without melting: a short review of friction-based additive manufacturing techniques. Int J Addit Subtractive Mater Manuf 1(1):82. https://doi.org/10.1504/ijasmm.2017.082991

    Article  Google Scholar 

  86. Mendez PF, Eagar TW (2002) New trends in welding in the aeronautic industry. In: 2nd conference of new manufacturing trends, Bilboa, Spain

    Google Scholar 

  87. Hofmann DC, Roberts S, Otis R, Kolodziejska J, Dillon RP, Suh JO, Borgonia JP (2014) Developing gradient metal alloys through radial deposition additive manufacturing. Sci Rep 4(4):1–8

    Google Scholar 

  88. Magalhães VM, Leitão C, Rodrigues DM (2017) Friction stir welding industrialisation and research status. Sci Technol Weld Joining. https://doi.org/10.1080/13621718.2017.1403110

    Article  Google Scholar 

  89. 3dprint.com resources. https://3dprint.com/174645/friction-stir-am. Last accessed on 2020/07/18

  90. Yu HZ, Jones ME, Brady GW, Griffiths RJ, Garcia D, Rauch HA et al (2018) Non-beam-based metal additive manufacturing enabled by additive friction stir deposition. Scr Mater 153:122–130. https://doi.org/10.1016/j.scriptamat.2018.03.025

  91. Puleo SM (2016) Additive friction stir manufacturing of 7055 aluminum alloy. Senior Honors theses. Paper 75

    Google Scholar 

  92. Du B, Sun Z, Yang X, Cui L, Song J, Zhang Z (2016) Characteristics of friction plug welding to 10mm thick AA2219-T87 sheet: weld formation, microstructure and mechanical property. Mater Sci Eng A 654:21–29

    Article  Google Scholar 

  93. Huang YX, Han B, Tian Y, Liu HJ, Lv SX, Feng JC, Leng JS, Li Y (2011) New technique of filling friction stir welding. Sci Technol Weld Join 16:497–501

    Article  Google Scholar 

  94. Reimann M, Goebel J, dos Santos JF (2017) Microstructure and mechanical properties of keyhole repair welds in AA 7075–T651 using refill friction stir spot welding. Mater Des 132:283–294

    Article  Google Scholar 

  95. Griffiths RJ, Petersen DT, Garcia D, Yu HZ (2019) Additive friction stir-enabled solid-state additive manufacturing for the repair of 7075 aluminum alloy. Appl Sci 9(17):3486. https://doi.org/10.3390/app9173486

    Article  Google Scholar 

  96. Srivastava M, Rathee S, Maheshwari S, Siddiquee AN, Kundra TK (2018) A review on recent progress in solid state friction based metal additive manufacturing: friction stir additive techniques. Crit Rev Solid State Mater Sci. https://doi.org/10.1080/10408436.2018.1490250

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dhruv Shah .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Shah, D., Badheka, V.J. (2021). Friction Stir Additive Manufacturing—A Review. In: Parwani, A.K., Ramkumar, P., Abhishek, K., Yadav, S.K. (eds) Recent Advances in Mechanical Infrastructure. Lecture Notes in Intelligent Transportation and Infrastructure. Springer, Singapore. https://doi.org/10.1007/978-981-33-4176-0_2

Download citation

  • DOI: https://doi.org/10.1007/978-981-33-4176-0_2

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-33-4175-3

  • Online ISBN: 978-981-33-4176-0

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics