Skip to main content

Efficient Ensemble Sparse Convolutional Neural Networks with Dynamic Batch Size

  • Conference paper
  • First Online:
Computer Vision and Image Processing (CVIP 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1378))

Included in the following conference series:

  • 1128 Accesses

Abstract

In this paper, an efficient ensemble sparse Convolutional Neural Networks (CNNs) with dynamic batch size is proposed. We addressed two issues at the heart of deep learning—speed and accuracy. Firstly, we presented ensemble CNNs with weighted average stacking which significantly increases the testing accuracy. Secondly, we combine network pruning and Winograd-ReLU convolution to accelerate computational speed. Motivated by electron movement in electrical fields, we finally propose a novel, dynamic batch size algorithm. We repeatedly increase the learning rate and the momentum coefficient until validation accuracy falls, while scaling the batch size. With no data augmentation and little hyperparameter tuning, our method speeds up models on FASHION-MINST, CIFAR-10, and CIFAR-100 to 1.55x, 2.86x, and 4.15x with a testing accuracy improvement of 2.66%, 1.37%, and 4.48%, respectively. We also visually demonstrate that our approach retains the most distinct image classification features during exhaustive pruning.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Lecun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document recognition. Proc. IEEE 86(11), 2278–2324 (1998)

    Article  Google Scholar 

  2. Krizhevsky, A., Sutskever, I., Hinton, G.E.: Imagenet classification with deep convolutional neural networks. Commun. ACM 60(6), 84–90 (2017)

    Article  Google Scholar 

  3. Simonyan, K., Zisserman, A.: Very deep convolutional networks for large-scale image recognition (2014)

    Google Scholar 

  4. He, K., Zhang, X., Ren, S., Sun, J.: Deep residual learning for image recognition (2015)

    Google Scholar 

  5. Mathieu, M., Henaff, M., LeCun, Y.: Fast training of convolutional networks through FFTs (2013)

    Google Scholar 

  6. Lavin, A., Gray, S.: Fast algorithms for convolutional neural networks (2015)

    Google Scholar 

  7. Winograd, S.: Arithmetic Complexity of Computations. Society for Industrial and Applied Mathematics (1980)

    Google Scholar 

  8. Ioffe, S., Szegedy, C.: Batch normalization: accelerating deep network training by reducing internal covariate shift (2015)

    Google Scholar 

  9. Lu, L., Liang, Y.: SpWA: an efficient sparse winograd convolutional neural networks accelerator on FPGAs. In: 2018 55th ACM/ESDA/IEEE Design Automation Conference (DAC), pp. 1–6 (2018)

    Google Scholar 

  10. Liu, X.: Pruning of winograd and FFT based convolution algorithm (2016)

    Google Scholar 

  11. Li, S., Park, J., Tang, P.T.P.: Enabling sparse winograd convolution by native pruning (2017)

    Google Scholar 

  12. Liu, X., Pool, J., Han, S., Dally, W.J.: Efficient sparse-winograd convolutional neural networks (2018)

    Google Scholar 

  13. Nair, V., Hinton, G.E.: Rectified linear units improve restricted Boltzmann machines. In: Proceedings of the 27th International Conference on International Conference on Machine Learning, ICML 2010, Madison, WI, USA, pp. 807–814. Omnipress (2010)

    Google Scholar 

  14. Maas, A.L.: Rectifier nonlinearities improve neural network acoustic models (2013)

    Google Scholar 

  15. He, K., Zhang, X., Ren, S., Sun, J.: Delving deep into rectifiers: surpassing human-level performance on ImageNet classification (2015)

    Google Scholar 

  16. Clevert, D.A., Unterthiner, T., Hochreiter, S.: Fast and accurate deep network learning by exponential linear units (ELUs) (2015)

    Google Scholar 

  17. Krizhevsky, A.: One weird trick for parallelizing convolutional neural networks (2014)

    Google Scholar 

  18. Keskar, N.S., Mudigere, D., Nocedal, J., Smelyanskiy, M., Tang, P.T.P.: On large-batch training for deep learning: generalization gap and sharp minima (2016)

    Google Scholar 

  19. Hoffer, E., Hubara, I., Soudry, D.: Train longer, generalize better: closing the generalization gap in large batch training of neural networks (2017)

    Google Scholar 

  20. Balles, L., Romero, J., Hennig, P.: Coupling adaptive batch sizes with learning rates (2016)

    Google Scholar 

  21. McCandlish, S., Kaplan, J., Amodei, D., OpenAI Dota Team: An empirical model of large-batch training (2018)

    Google Scholar 

  22. Smith, S.L., Le, Q.V.: A Bayesian perspective on generalization and stochastic gradient descent (2017)

    Google Scholar 

  23. Goyal, P., et al.: Accurate, large minibatch SGD: training ImageNet in 1 hour (2017)

    Google Scholar 

  24. LeCun, Y., Cortes, C., Burges, C.J.: MNIST handwritten digit database. ATT Labs, 2 (2010). http://yann.lecun.com/exdb/mnist

  25. Li, H., Xu, Z., Taylor, G., Studer, C., Goldstein, T.: Visualizing the loss landscape of neural nets (2017)

    Google Scholar 

  26. Santurkar, S., Tsipras, D., Ilyas, A., Madry, A.: How does batch normalization help optimization? (2018)

    Google Scholar 

  27. Xiao, H., Rasul, K., Vollgraf, R.: Fashion-MNIST: a novel image dataset for benchmarking machine learning algorithms (2017)

    Google Scholar 

  28. Krizhevsky, A., Hinton, G.: Learning multiple layers of features from tiny images (2009)

    Google Scholar 

  29. Springenberg, J.T., Dosovitskiy, A., Brox, T., Riedmiller, M.: Striving for simplicity: the all convolutional net (2014)

    Google Scholar 

  30. Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I., Salakhutdinov, R.: Dropout: a simple way to prevent neural networks from overfitting. J. Mach. Learn. Res. 15(1), 1929–1958 (2014)

    MathSciNet  MATH  Google Scholar 

  31. Smith, S.L., Kindermans, P.J., Ying, C., Le, Q.V.: Don’t decay the learning rate, increase the batch size (2017)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gaurav Gupta .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zheng, S., Wang, L., Gupta, G. (2021). Efficient Ensemble Sparse Convolutional Neural Networks with Dynamic Batch Size. In: Singh, S.K., Roy, P., Raman, B., Nagabhushan, P. (eds) Computer Vision and Image Processing. CVIP 2020. Communications in Computer and Information Science, vol 1378. Springer, Singapore. https://doi.org/10.1007/978-981-16-1103-2_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-1103-2_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-1102-5

  • Online ISBN: 978-981-16-1103-2

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics