Skip to main content

Mineralogical Study of Lunar South Pole Region Using Chandrayaan-1 Hyperspectral (HySI) Data

  • Conference paper
  • First Online:
Recent Trends in Image Processing and Pattern Recognition (RTIP2R 2020)

Abstract

The main focus of the presented work was to better predict the surface mineralogy from the Chandrayaan-1 hyperspectral data set covering the area from South Pole region. To address the space weathering effect and to quantify mineralogy the Bi-directional reflectance function have been implemented. The implemented model was tested against two standard lunar laboratory mixtures and with the Apollo 10084 bulk soil sample. About 85 spectra were initially selected from varying locations and only active spectra with significant absorption were used for modeling. The minerals like plagioclase and Clinopyroxene were identified. Many spectra exhibits more iron content simulating mature area. Model result show no olivine content and very low Orthopyroxene content may be because of more crustal thickness, no impact would have penetrated to the lower mantle. Study reveals the potential of hyperspectral data multiplexed with mathematical model for not only mineral quantification but also helps to predict other associated parameters like grain size, iron fraction, phase function, however the spectra from mature soil and the limited HySI coverage acts as challenge for modelling process, modeling the data at longer wavelengths will be an advantage to improve the accurate mineral prediction.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Jin, S., Arivazhagan, S., Araki, H.: New results and questions of lunar exploration from SELENE, Chang’E-1, Chandrayaan-1 and LRO/LCROSS. Adv. Space Res. 52(2), 285–305 (2013)

    Article  Google Scholar 

  2. McCord, T.B., Adams, J.B.: Progress in remote optical analysis of lunar surface composition. The Moon 7(3–4), 453–474 (1973). https://doi.org/10.1007/BF00564646

    Article  Google Scholar 

  3. Isaacson, P.J., Pieters, C.M.: Northern imbrium noritic anomaly. J. Geophys. Res. 114, E09007 (2009). https://doi.org/10.1029/2008JE003293

  4. Bhattacharya, S., Chauhan, P., Rajawat, A.S., Kumar, A.S.K.: Lithological mapping of central part of Mare Moscoviense using Chandrayaan-1 Hyperspectral Imager (HySI) data. Icarus 212(2), 470–479 (2011). https://doi.org/10.1016/j.icarus.2011.02.006

    Article  Google Scholar 

  5. Borst, A.M., Foing, B.H., Davies, G.R., van Westrenen, W.: Surface mineralogy and stratigraphy of the lunar south pole-Aitken basin determined from Clementine UV/VIS and NIR data. Planetary Space Sci. 68(1), 76–85 (2012). https://doi.org/10.1016/j.pss.2011.07.020

    Article  Google Scholar 

  6. Sayyad, S.B., Mohammed, Z.R., Deshmukh, R.R.: Mineral mapping of mare cresium using Chandrayaan-1 Hyperspectral (HySI) data. J. Appl. Sci. Comput. 5(7), 88–95 (2018)

    Google Scholar 

  7. Sivakumar, V., Neelakantan, R.: Mineral mapping of lunar highland region using Moon Mineralogy Mapper (M3) hyperspectral data. J. Geol. Soc. India 86(5), 513–518 (2015). https://doi.org/10.1007/s12594-015-0341-1

    Article  Google Scholar 

  8. Sivakumar, V., Neelakantan, R., Santosh, M.: Lunar surface mineralogy using hyperspectral data: implications for primordial crust in the Earth-Moon system. Geosci. Front. 8(3), 457–465 (2017). https://doi.org/10.1016/j.gsf.2016.03.005

    Article  Google Scholar 

  9. Burns, R.G.: Mineralogical Applications of Crystal Field Theory. Cambridge University Press, New York (1970)

    Google Scholar 

  10. Anbazhagan, S., Arivazhagan, S.: Reflectance spectra of analog basalts; implications for remote sensing of lunar geology. Planet. Space Sci. 57(12), 1346–1358 (2009)

    Google Scholar 

  11. Anbazhagan, S., Arivazhagan, S.: Reflectance spectra of analog anorthosites: Implications for lunar highland mapping. Planet. Space Sci. 58(5), 752–760 (2010)

    Article  Google Scholar 

  12. Hapke, B.: Effects of a simulated solar wind on the photometric properties of rocks and powders. Ann. N. Y. Acad. Sci. 123, 711–721 (1965). https://doi.org/10.1111/j.1749-6632.1965.tb20395.x

    Article  Google Scholar 

  13. Hapke, B.: Inferences from the optical properties of the moon concerning the nature and evolution of the lunar surface. Radio Sci. 5, 293–299 (1970). https://doi.org/10.1029/RS005i002p00293

    Article  Google Scholar 

  14. Hapke, B.: Darkening of silicate rock powders by solar wind sputtering. The Moon 7, 342–355 (1973). https://doi.org/10.1007/BF00564639

    Article  Google Scholar 

  15. Hapke, B., Cassidy, W., Well, E.: Effects of vapor-phase deposition processes on the optical, chemical, and magnetic properties of the lunar regolith. The Moon 13,339–353 (1975). https://doi.org/10.1007/BF00567525

  16. Keller, L.P., Mckay, D.S.: Discovery of vapor deposits in the lunar regolith. Science 261, 1305–1307 (1993)

    Article  Google Scholar 

  17. Keller, L.P., McKay, D.S.: the nature and origin of rims on lunar soil grains. Geochim. Cosmochim. Ac. 61, 2331–2341 (1997)

    Article  Google Scholar 

  18. Taylor, L.A., Pieters, C.M., Keller, L.P., Morris, R.V., McKay, D.S.: Lunar mare soils: space weathering and the major effects of surface-correlated nanophase Fe. J. Geophys. Res.-Planets 106, 27985–27999 (2001)

    Article  Google Scholar 

  19. Taylor, L. A., et al.: Mineralogical and chemical characterization of lunar highland soils: insights into the space weathering of soils on airless bodies, J. Geophys. Res. Planets 115, E02002 (2010)

    Google Scholar 

  20. Sunshine, J.M., Pieters, C.M., Prait, S.F.: Deconvolution of mineral absorption bands: an improved approach. J. Geophys. Res. 95(B5), 6955–6966 (1990). https://doi.org/10.1029/JB095iB05p06955

    Article  Google Scholar 

  21. Hapke, B.: Bidirectional reflectance spectroscopy: I. Theory. J. Geophys. Res. Solid Earth 86(B4), 3039–3054 (1981). https://doi.org/10.1029/JB086iB04p03039

    Article  Google Scholar 

  22. Shkuratov, Y.G., Starukhina, L., Huffmann, H., Arnold, G.: A model of spectral albedo of particulate surfaces: implications for optical properties of the Moon. Icarus 137(2), 235–246 (1999). https://doi.org/10.1006/icar.1998.6035

    Article  Google Scholar 

  23. Hapke, B., Wells, E.: Bidirectional reflectance spectroscopy. II Experiments and observations. J. Geophys. Res. 86, 3055–3060 (1981)

    Google Scholar 

  24. Hapke, B.: Bidirectional reflectance spectroscopy. III - Correction for Macroscopicroughness, Icarus 59, 41–59 (1984)

    Google Scholar 

  25. Hapke, B.: Bidirectional reflectance spectroscopy IV - The extinction coefficient and the opposition effect. Icarus 67(2), 264–280 (1986). https://doi.org/10.1016/0019-1035(86)90108-9

    Article  Google Scholar 

  26. Hapke, B.: Theory of reflectance and emittance spectroscopy. Topics in Remote Sensing, Cambridge. Cambridge University Press, UK (1993)

    Book  Google Scholar 

  27. Hapke, B.: Space weathering from Mercury to the asteroid belt. J. Geophys. Res. Planets 106(E5), 10039–10073 (2001). https://doi.org/10.1029/2000JE001338

    Article  Google Scholar 

  28. Clark, R.N., Roush, T.L.: Reflectance spectroscopy: quantitative analysis techniques for remote sensing applications. J. Geophys. Res. 89, 6329–6340 (1984). https://doi.org/10.1029/JB089iB07p06329

    Article  Google Scholar 

  29. Mustard, J.F., Pieters, C.M.: Quantitative abundance estimates from bidirectional reflectance measurements. In: Proceedings of the 17th Lunar and Planetary Science Conference, Part 2 (1987). J. Geophys. Res. 92, E617–E626 (1987). https://doi.org/10.1029/JB092iB04p0E617

  30. Lucey, P.G.: Mineral maps of the Moon. Geophys. Res. Lett. 31, L08701 (2004). https://doi.org/10.1029/2003GL019406

    Article  Google Scholar 

  31. Lawrence, S.J., Lucey, P.G.: Radiative transfer mixing models of meteoritic assemblages. J. Geophys. Res. 112, E07005 (2007). https://doi.org/10.1029/2006JE002765

  32. Cahill, J.T.S., Lucey, P.G., Wieczorek, M.A.: Compositional variations of the lunar crust: results from radiative transfer modeling of central peak spectra. J. Geophys. Res. 114, E09001 (2009). https://doi.org/10.1029/2008JE003282

    Article  Google Scholar 

  33. Cahill, J.T.S., Lucey, P.G., Stockstill-Cahill, K.R., Hawke, B.R.: Radiative transfer modeling of near-infrared reflectance of lunarhighland and mare soils. J. Geophys. Res. 115, E12013 (2010). https://doi.org/10.1029/2009JE003500

    Article  Google Scholar 

  34. Yan, B., Wang, R., Gan, F., Wang, Z.: Minerals mapping of the lunar surface with Clementine UVVIS/NIR data based on spectra un mixing method and Hapke model. Icarus 208, 11–19 (2010)

    Article  Google Scholar 

  35. Hiroi, T., Pieters, C.M.: Estimation of grain sizes and mixing ratios of fine powder mixtures of common geologic minerals. J. Geophys. Res. 99(E5), 10867 (1994). https://doi.org/10.1029/94JE00841

    Article  Google Scholar 

  36. Johnson, P.B., Cristy, R.W.: Optical constants of metals: Ti, V, Cr, Mn, Fe, Co, Ni, and Pd, prb. Phys. Rev. 9, 5056–5070 (1974)

    Article  Google Scholar 

  37. Morris, R.V.: The surface exposure /maturity/ of lunar soils - some concepts and Is/FeO compilation. In: Proceedings of the 9th Lunar and Planetary Science Conference, Houston, TX, 13–17 March 1987, vol. 2, pp. 2287–2297. Pergamon Press, Inc., New York (1978)

    Google Scholar 

  38. Kumar, A.: Hyper spectral imager for lunar mineral mapping in visible and near infrared band. Curr. Sci. 96, 496 (2009)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to R. Mohammed Zeeshan .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Zeeshan, R.M., Shafiyoddin, B.S., Deshmukh, R.R., Yadav, A. (2021). Mineralogical Study of Lunar South Pole Region Using Chandrayaan-1 Hyperspectral (HySI) Data. In: Santosh, K.C., Gawali, B. (eds) Recent Trends in Image Processing and Pattern Recognition. RTIP2R 2020. Communications in Computer and Information Science, vol 1381. Springer, Singapore. https://doi.org/10.1007/978-981-16-0493-5_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-16-0493-5_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-16-0492-8

  • Online ISBN: 978-981-16-0493-5

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics