Skip to main content

Nonlinear Analysis of Piezoceramic Laminated Structures

  • Chapter
  • First Online:
Nonlinear Analysis of Thin-Walled Smart Structures

Abstract

In this chapter, geometrically nonlinear FE models, including RVK5, MRT5, LRT5 and LRT56, are validated by static analysis of composite laminated thin-walled structures. Later, the geometrically nonlinear FE models are test by buckling and post-buckling analysis of cylindrical composite panels. Afterwards, the geometrically nonlinear FE models are implemented into static and dynamic analysis of piezolaminated beam, plate and shell structures. In the last part, the simulations of nonlinear phenomena including both geometrically and electroelastic materially nonlinear effects are performed through piezo structures undergoing large displacement and under strong electric field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. C.T. Sun, H. Chin, Analysis of asymmetric composite laminates. AIAA J. 26, 714–718 (1988)

    Article  Google Scholar 

  2. J.N. Reddy, On refined computational models of composite laminates. Int. J. Numer. Methods Eng. 27, 361–382 (1989)

    Article  MathSciNet  Google Scholar 

  3. Y. Basar, Y. Ding, R. Schultz, Refined shear-deformation models for composite laminates with finite rotations. Int. J. Solids Struct. 30, 2611–2638 (1993)

    Article  Google Scholar 

  4. I. Kreja, R. Schmidt, Large rotations in first-order shear deformation FE analysis of laminated shells. Int. J. Non-Linear Mech. 41, 101–123 (2006)

    Article  Google Scholar 

  5. S.Q. Zhang, R. Schmidt, Large rotation theory for static analysis of composite and piezoelectric laminated thin-walled structures. Thin-Walled Struct. 78, 16–25 (2014)

    Article  Google Scholar 

  6. S.Q. Zhang, R. Schmidt, Static and dynamic FE analysis of piezoelectric integrated thin-walled composite structures with large rotations. Compos. Struct. 112, 345–357 (2014)

    Article  Google Scholar 

  7. N. Stander, A. Matzenmiller, E. Ramm, An assessment of assumed strain methods in finite rotation shell analysis. Eng. Comput. 6, 58–66 (1989)

    Article  Google Scholar 

  8. A.F. Saleeb, T.Y. Chang, W. Graf, S. Yingyeunyong, A hybrid/mixed model for non-linear shell analysis and its applications to large-rotation problems. Int. J. Numer. Methods Eng. 29, 407–446 (1990)

    Article  Google Scholar 

  9. C. Sansour, H. Bufler, An exact finite rotation shell theory, its mixed variational formulation and its finite element implementation. Int. J. Numer. Methods Eng. 34, 73–115 (1992)

    Article  MathSciNet  Google Scholar 

  10. L. Jiang, M.W. Chernuka, A simple four-noded corotational shell element for arbitrarily large rotations. Comput. Struct. 53, 1123–1132 (1994)

    Article  Google Scholar 

  11. A. Masud, C.L. Tham, W.K. Liu, A stabilized 3-D co-rotational formulation for geometrically nonlinear analysis of multi-layered composite shells. Comput. Mech. 26, 1–12 (2000)

    Article  Google Scholar 

  12. K.Y. Sze, X.H. Liu, S.H. Lo, Popular benchmark problems for geometric nonlinear analysis of shells. Finite Elem. Anal. Des. 40, 1551–1569 (2004)

    Article  Google Scholar 

  13. R.A. Arciniega, J.N. Reddy, Tensor-based finite element formulation for geometrically nonlinear analysis of shell structures. Comput. Methods Appl. Mech. Eng. 196, 1048–1073 (2007)

    Article  MathSciNet  Google Scholar 

  14. S. Saigal, R.K. Kapania, T.Y. Yang, Geometrically nonlinear finite element analysis of imperfect laminated shells. J. Compos. Mater. 20, 197–214 (1986)

    Article  Google Scholar 

  15. G. Laschet, J.P. Jeusette, Postbuckling finite element analysis of composite panels. Compos. Struct. 14, 35–48 (1990)

    Article  Google Scholar 

  16. B. Brank, D. Perić, B. Damjanić, On implementation of a nonlinear four node shell finite element for thin multilayered elastic shells. Comput. Mech. 16, 341–359 (1995)

    Article  Google Scholar 

  17. S. Yi, S.F. Ling, M. Ying, Large deformation finite element analyses of composite structures integrated with piezoelectric sensors and actuators. Finite Elem. Anal. Des. 35, 1–15 (2000)

    Article  Google Scholar 

  18. S. Lentzen, R. Schmidt, A geometrically nonlinear finite element for transient analysis of piezolaminated shells, in Proceedings Fifth EUROMECH Nonlinear Dynamics Conference (Eindhoven, Netherlands, 7–12 August 2005), pp. 2492–2500

    Google Scholar 

  19. S.Q. Zhang, R. Schmidt, Large rotation FE transient analysis of piezolaminated thin-walled smart structures. Smart Mater. Struct. 22, 105025 (2013)

    Article  Google Scholar 

  20. H.S. Tzou, R. Ye, Analysis of piezoelastic structures with laminated piezoelectric triangle shell elements. AIAA J. 34, 110–115 (1996)

    Article  Google Scholar 

  21. K.Y. Sze, L.Q. Yao, Modeling smart structures with segmented piezoelectric sensors and actuators. J. Sound Vib. 235, 495–520 (2000)

    Article  Google Scholar 

  22. Q.M. Wang, Q. Zhang, B. Xu, R. Liu, L.E. Cross, Nonlinear piezoelectric behavior of ceramic bending mode actuators under strong electric fields. J. Appl. Phys. 86(6), 3352–3360 (1999)

    Article  Google Scholar 

  23. S.Q. Zhang, G.Z. Zhao, S.Y. Zhang, R. Schmidt, X.S. Qin, Geometrically nonlinear FE analysis of piezoelectric laminated composite structures under strong driving electric field. Compos. Struct. 181, 112–120 (2017)

    Article  Google Scholar 

  24. S. Kapuria, M.Y. Yasin, A nonlinear efficient layerwise finite element model for smart piezolaminated composites under strong applied electric field, in Smart Materials and Structures (2013)

    Google Scholar 

  25. L.Q. Yao, J.G. Zhang, L. Lu, M.O. Lai, Nonlinear extension and bending of piezoelectric laminated plate under large applied field actuation. Smart Mater. Struct. 13, 404–414 (2004)

    Article  Google Scholar 

  26. S.Q. Zhang, Z.X. Wang, X.S. Qin, G.Z. Zhao, R. Schmidt, Geometrically nonlinear analysis of composite laminated structures with multiple macro-fiber composite (MFC) actuators. Compos. Struct. 150, 62–72 (2016)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shun-Qi Zhang .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, SQ. (2021). Nonlinear Analysis of Piezoceramic Laminated Structures. In: Nonlinear Analysis of Thin-Walled Smart Structures. Springer Tracts in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-9857-9_6

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9857-9_6

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9856-2

  • Online ISBN: 978-981-15-9857-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics