Skip to main content

Non-adiabatic Wall Effects on Transonic Shock/Boundary Layer Interaction

  • Conference paper
  • First Online:
Design and Development of Aerospace Vehicles and Propulsion Systems

Abstract

Direct simulations are carried out to investigate the influence of unsteady heat flux transfer on transonic shock-boundary layer interaction; for flow past SHM-1 airfoil at a free-stream Mach number \(M_{\infty }\) = 0.72 and angle of attack \(\alpha = 0.38^{\circ }\). Flux is added in a periodic manner through a region \((8{-}18\% \; of \;the \;chord)\) located on the suction side of the airfoil, with multiple values of exciter time period \((T_{\text {e}}=2,4)\) considered for our simulation. We show that addition of unsteady heat flux delayed shock formation, along with significant modifications in it’s structure. The time-averaged \(C_{\text {p}}\) distributions revealed a shift in the shock towards the aft, by approximately 5% of the chord; along with an increased lift near the trailing edge, suggesting a nose-down stabilizing influence. Primarily, it is noted that the additional heat flux resulted in an overall increase of the aerodynamic efficiency (lift to drag ratio) by approximately \(10\%\).

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Toure PSR, Schuelein E (2018) Numerical and experimental study of nominal 2-D shock-wave/turbulent boundary layer interactions. In: AIAA 2018-3395, fluid dynamics conference, 3395

    Google Scholar 

  2. Gross A, Lee S (2018) Numerical analysis of laminar and turbulent shock-wave boundary layer interactions. In: AIAA 2018-4033, fluid dynamics conference , 4033

    Google Scholar 

  3. Quadros R, Bernardini M (2018) Numerical investigation of transitional shock-wave/boundary-layer interaction in supersonic regime. AIAA J 56:2712–2724

    Article  Google Scholar 

  4. Hermes V, Klioutchnikov I, Olivier H (2013) Numerical investigation of unsteady wave phenomena for transonic airfoil flow. Aerosp Sci Technol 25(1):224–233

    Article  Google Scholar 

  5. Bernardini M, Asproulias I, Larsson J, Pirozzoli S, Grasso F (2016) Heat transfer and wall temperature effects in shock wave turbulent boundary layer interactions. Phys Rev Fluids 1(8):084403

    Article  Google Scholar 

  6. Raghunathan S, Mitchell D (1995) Computed effects of heat transfer on the transonic flow over an aerofoil. AIAA J 33(11):2120–2127

    Article  Google Scholar 

  7. Raghunathan S, Early JM, Tulita C, Benard E (2008) Periodic transonic flow and control. Aeronaut J 112(1127):1–16

    Article  Google Scholar 

  8. Fujino M, Yoshizak Y, Kawamura Y (2003) Natural-laminar-flow airfoil development for a lightweight business jet. J Aircr 40(4):609–615

    Article  Google Scholar 

  9. Chakravarthy S, Harten A, Osher S (1986) Essentially non-oscillatory shock-capturing schemes of arbitrarily-high accuracy. In: AIAA 1986-339, 24th aerospace sciences meeting, 339

    Google Scholar 

  10. Ha Y, Kim CH, Lee YJ, Yoon J (2013) An improved weighted essentially non-oscillatory scheme with a new smoothness indicator. J Comput Phys 232(1):68–86

    Article  MathSciNet  Google Scholar 

  11. Allaneau Y, Jameson A (2009) Direct numerical simulations of a two-dimensional viscous flow in a shocktube using a kinetic energy preserving scheme. In: 19th AIAA computational fluid dynamics, 3797

    Google Scholar 

  12. Chiu EKY, Wang Q, Jameson A (2011) A conservative meshless scheme: general order formulation and application to Euler equations. In: 49th AIAA aerospace sciences meeting, 651

    Google Scholar 

  13. Ohwada T, Shibata Y, Kato T, Nakamura T (2018) A simple, robust and efficient high-order accurate shock-capturing scheme for compressible flows: towards minimalism. J Comput Phys 362:131–162

    Article  MathSciNet  Google Scholar 

  14. Borges R, Carmona M, Costa B, Don WS (2008) An improved weighted essentially non-oscillatory scheme for hyperbolic conservation laws. J Comput Phys 227(6):3191–3211

    Article  MathSciNet  Google Scholar 

  15. Sengupta TK, Ganeriwal G, De S (2003) Analysis of central and upwind compact schemes. J Comput Phys 192(2):677–694

    Article  Google Scholar 

  16. Sengupta TK (2013) High accuracy computing methods: fluid flows and wave phenomena. Cambridge University Press

    Google Scholar 

  17. Sengupta TK (2004) Fundamentals of computational fluid dynamics. Universities Press, Hyderabad, India

    Google Scholar 

  18. Sengupta TK, Bhole A, Sreejith NA (2013) Direct numerical simulation of 2D transonic flows around airfoils. Comput Fluids 88:19–37

    Article  MathSciNet  Google Scholar 

  19. Garbaruk A, Shur M, Strelets M (2003) Numerical study of wind-tunnel walls effects on transonic airfoil flow. AIAA J 41(6):1046–1054

    Article  Google Scholar 

  20. Binnion TW (1979) Limitations of available data. AGARD-AR 138

    Google Scholar 

  21. Dipankar A, Sengupta TK (2006) Symmetrized compact scheme for receptivity study of 2D transitional channel flow. J Comput Phys 215(1):245–273

    Article  Google Scholar 

  22. Sengupta TK, Ganerwal G, Dipankar A (2004) High accuracy compact schemes and Gibbs’ phenomenon. J Sci Comput 21(3):253–268

    Article  MathSciNet  Google Scholar 

  23. Sengupta TK, Dipankar A, Sagaut P (2007) Error dynamics: beyond von Neumann analysis. J Comput Phys 226(2):1211–1218

    Article  MathSciNet  Google Scholar 

  24. Sengupta TK, Dipankar A, Rao AK (2007) A new compact scheme for parallel computing using domain decomposition. J Comput Phys 220(2):654–677

    Article  Google Scholar 

  25. Dolean V, Lanteri S, Nataf F (2002) Optimized interface conditions for domain decomposition methods in fluid dynamics. Int J Numer Methods Fluids 40(12):1539–1550

    Article  MathSciNet  Google Scholar 

  26. Rajpoot MK, Sengupta TK, Dutt PK (2010) Optimal time advancing dispersion relation preserving schemes. J Comput Phys 229(10):3623–3651

    Article  MathSciNet  Google Scholar 

  27. Sengupta TK, Bhumkar YG (2010) New explicit two-dimensional higher order filters. Comput Fluids 39(10):1848–1863

    Article  Google Scholar 

  28. Van Der Vorst HA (1992) Bi-CGSTAB: a fast and smoothly converging variant of Bi-CG for the solution of nonsymmetric linear systems. SIAM J Sci Stat Comput 13(2):631–644

    Google Scholar 

  29. Bagade PM, Bhumkar YG, Sengupta TK (2014) An improved orthogonal grid generation method for solving flows past highly cambered aerofoils with and without roughness elements. Comput Fluids 103:275–289

    Article  MathSciNet  Google Scholar 

  30. Hoffmann KA, Chiang ST (1993) Computational fluid dynamics for engineers, vol 2. Engineering Education System Wichita, KS

    Google Scholar 

  31. Pulliam TH (1986) Solution methods in computational fluid dynamics. In: Notes for the von KĂ¡rmĂ¡n institute for fluid dynamics lecture series

    Google Scholar 

  32. Samtaney R, Morris RD, Cheeseman P, Sunelyansky V, Maluf D, Wolf D (2000) Visualization, extraction and quantification of discontinuities in compressible flows. In: International conference on computer vision and pattern recognition (2000)

    Google Scholar 

  33. Lee BHK, Murty H, Jiang H (1994) Role of Kutta waves on oscillatory shock motion on an airfoil. AIAA J 32(4):789–796

    Article  Google Scholar 

  34. Tijdeman H (1977) Investigations of the transonic flow around oscillating airfoils. Nationaal Lucht-en Ruimtevaartlaboratorium

    Google Scholar 

  35. Liepmann HW, Roshko A (1957) Elements of gasdynamics. Courier Corporation

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sahil Bhola .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Bhola, S., Sengupta, T.K. (2021). Non-adiabatic Wall Effects on Transonic Shock/Boundary Layer Interaction. In: Kumar, S.K., Narayanaswamy, I., Ramesh, V. (eds) Design and Development of Aerospace Vehicles and Propulsion Systems . Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-9601-8_20

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9601-8_20

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9600-1

  • Online ISBN: 978-981-15-9601-8

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics