Skip to main content

Post-earthquake Emergency Response and Recovery Through City-Scale Nonlinear Time-History Analysis

  • Chapter
  • First Online:
Earthquake Disaster Simulation of Civil Infrastructures
  • 1205 Accesses

Abstract

The city-scale nonlinear THA can also be used to evaluate the extent of the emergency response and recovery after an earthquake. This chapter firstly proposes a real-time earthquake damage assessment using recorded ground motions and city-scale nonlinear THA, which can significantly reduce the uncertainties of the ground motion inputs. Subsequently, the city-scale nonlinear THA is also used to predict the regional seismic damage under the mainshock–aftershock sequence. By using the remote sensing images after an earthquake, inherent loss estimation errors of the city-scale nonlinear THA can be significantly reduced. Based on the city-scale nonlinear time–history analysis, together with the component-level seismic-damage assessment method of FEMA P-58 and the repair simulation method of REDi, a city-scale, THA-driven building seismic resilience simulation framework is proposed to optimize the community repair strategy.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abrahamson NA, Silva WJ, Kamai R (2014) Summary of the ASK14 ground motion relation for active crustal regions. Earthq Spectra 30(3):1025–1055

    Article  Google Scholar 

  • Almufti I, Willford M (2013) REDiTM rating system: Resiliencebased earthquake design initiative for the next generation of buildings. Arup, San Francisco, CA

    Google Scholar 

  • Amadio C, Fragiacomo M, Rajgelj S (2003) The effects of repeated earthquake ground motions on the non-linear response of SDOF systems. Earthq Eng Struct Dyn 32(2):291–308

    Article  Google Scholar 

  • Ancheta TD, Darragh RB, Stewart JP, Seyhan E, Silva WJ, Chiou BSJ, Wooddell E, Graves RW, Kottke AR, Boore DM, Kishida T, Donahue JL (2014) NGA-West2 database. Earthq Spectra 30(3):989–1005

    Article  Google Scholar 

  • Applied Technology Council (1985) Earthquake damage evaluation data for California. Final Report. Applied Technology Council, Redwood City, CA

    Google Scholar 

  • Ballantyne DB, Berg E, Kennedy J, Reneau R, Wu D, Taylor CE, Crouse CB, Eguchi R, Tillman C (1990) Earthquake loss estimation modeling of the Seattle water system. Report No 886005.00, Kennedy/Jenks/sChilton, Federal Way, Washington, DC

    Google Scholar 

  • Bishop CM (2006) Pattern recognition and machine learning

    Google Scholar 

  • BMBS (Beijing Municipal Bureau of Statistics) (2018). https://www.bjstats.gov.cn/zxfb/201803/t20180316_394572.htmlhttps://www.fang.com/. Accessed 12 Jan 2020

  • Bocchini P, Frangopol DM (2012) Restoration of bridge networks after an earthquake: Multicriteria intervention optimization. Earthq Spectra 28(2):426–455

    Article  Google Scholar 

  • Bommer JJ, Martínez-Pereira A (1999) The effective duration of earthquake strong motion. J Earthq Eng 3(2):127–172

    Article  Google Scholar 

  • Bommer JJ, Stafford PJ, Alarcón JE (2009) Empirical equations for the prediction of the significant, bracketed, and uniform duration of earthquake ground motion. Bull Seismol Soc Am 99(6):3217–3233

    Article  Google Scholar 

  • Boore DM, Stewart JP, Seyhan E, Atkinson GM (2014) NGA-West2 equations for predicting PGA, PGV, and 5% damped PSA for shallow crustal earthquakes. Earthq Spectra 30(3):1057–1085

    Article  Google Scholar 

  • Booth E, Saiko K, Spence R, Madabhushi G, Eguchi RT (2011) Validating assessments of seismic damage made from remote sensing. Earthq Spectra 27(S1):S157–S177

    Article  Google Scholar 

  • Bruneau M, Chang SE, Eguchi RT, Lee GC, O’Rourke TD, Reinhorn AM, Shinozuka M, Tierney K, Wallace WA, von Winterfeldt D (2003) A framework to quantitatively assess and enhance the seismic resilience of communities. Earthq Spectra 19(4):733–752

    Article  Google Scholar 

  • Bruneau M, Reinhorn A (2007) Exploring the concept of seismic resilience for acute care facilities. Earthq Spectra 23(1):41–62

    Article  Google Scholar 

  • Burton HV, Deierlein G, Lallemant D, Lin T (2015) Framework for incorporating probabilistic building performance in the assessment of community seismic resilience. J Struct Eng 142(8):C4015007

    Article  Google Scholar 

  • Campbell KW, Bozorgnia Y (2014) NGA-West2 ground motion model for the average horizontal components of PGA, PGV, and 5% damped linear acceleration response spectra. Earthq Spectra 30(3):1087–1115

    Article  Google Scholar 

  • Center for Engineering Strong Motion Data (CESMD) (2019a) https://www.strongmotioncenter.org/cgi-bin/CESMD/iqrStationMap.pl?ID=us1000hyfh. Accessed 26 Jan 2019

  • CESMD (2019b) Berkeley Earthquake of 20 Oct 2011. CESMD Internet Data Report. https://cesmd.org/cgi-bin/CESMD/iqr_dist_DM2.pl?IQRID=berkeley_20oct2011_71667366&SFlag=0&Flag=2. Accessed 12 Jan 2020

  • CESMD (2019c) Berkeley earthquake of 20 Oct 2011. CESMD Internet Data Report. https://cesmd.org/cgi-bin/CESMD/iqr_dist_DM2.pl?IQRID=berkeley_20oct2011_71667591&SFlag=0&Flag=2.Accessed 12 Jan 2020

  • Chang SE, Shinozuka M, Svekla W (1999) Modeling postdisaster urban lifeline restoration. In: 5th US conference on lifeline earthquake engineering. ASCE Technical Council on Lifeline Earthquake Engineering, New York, NY

    Google Scholar 

  • Chen H, Xie QC, Li ZQ, Xue W, Liu K (2017) Seismic damage to structures in the 2015 Nepal earthquake sequences. J Earthq Eng 21(4):551–578

    Article  Google Scholar 

  • Chiou B, Darragh R, Gregor N, Silva W (2008) NGA project strong-motion database. Earthq Spectra 24(1):23–44

    Article  Google Scholar 

  • Chiou BSJ, Youngs RR (2014) Update of the Chiou and Youngs NGA model for the average horizontal component of peak ground motion and response spectra. Earthq Spectra 30(3):1117–1153

    Article  Google Scholar 

  • Choi SS, Cha SH, Tappert CC (2010) A survey of binary similarity and distance measures. J Syst Cybern Inf 8(1):43–48

    Google Scholar 

  • Cimellaro GP, Reinhorn AM, Bruneau M (2010a) Framework for analytical quantification of disaster resilience. Eng Struct 32:3639–3649

    Google Scholar 

  • Cimellaro GP, Reinhorn AM, Bruneau M (2010b) Seismic resilience of a hospital system. Struct Infrastruct Eng 6(1–2):127–144

    Google Scholar 

  • Dai JW, Sun BT, Li SY, Tao ZR, Ma Q, Zhang LX and Lin JQ (2018) Engineering damage in Jiuzhaigou M 7.0 earthquake. Seismological Press, Beijing, China, p 18. (戴君武, 孙柏涛,李山有,熊立红,陶正如,马强,张令心,林均岐, (2018) 四川九寨沟7.0级地震之工程震害. 地震出版社, p 19)

    Google Scholar 

  • Decò A, Bocchini P, Frangopol DM (2013) A probabilistic approach for the prediction of seismic resilience of bridges. Earthquake Eng Struct Dynam 42(10):1469–1487

    Article  Google Scholar 

  • Dong L, Shan J (2013) A Comprehensive review of earthquake-induced building damage detection with remote sensing techniques. Isprs J Photogrammetry Remote Sens 84:85–99

    Article  Google Scholar 

  • Dong Y, Frangopol DM (2016) Performance-based seismic assessment of conventional and base-isolated steel buildings including environmental impact and resilience. Earthquake Eng Struct Dyn 45(5):739–756

    Article  Google Scholar 

  • Du WQ, Wang G (2017) Prediction equations for ground—motion significant durations using the NGA-West2 database. Bull Seismol Soc Am 107(1):319–333

    Article  MathSciNet  Google Scholar 

  • Ehrlich D, Guo HD, Molch K, Ma JW, Pesaresi M (2009) Identifying damage caused by the 2008 Wenchuan earthquake from VHR remote sensing data. Int J Digit Earth 2(4):309–326

    Article  Google Scholar 

  • Erdik M, Şeşetyan K, Demircioğlu MB, Hancılar U, Zülfikar C (2011) Rapid earthquake loss assessment after damaging earthquakes. Soil Dyn Earthq Eng 31(2):247–266

    Article  Google Scholar 

  • Fang (2018). https://www.fang.com/. Accessed 12 Jan 2020

  • Federal Emergency Management Agency (FEMA) (2012) Multi-Hazard loss estimation methodology—earthquake model, HAZUS–MH 2.1 technical manual. Department of Homeland Security, Federal Emergency Management Agency, Mitigation Division, Washington DC

    Google Scholar 

  • FEMA (2009) Quantification of building seismic performance factors (FEMA-P695). Federal emergency management agency, Washington, DC

    Google Scholar 

  • FEMA (2012) Seismic performance assessment of buildings (Volume 1-Methodology). Federal emergency management agency, Washington, DC

    Google Scholar 

  • Foulser-Piggott R, Spence R, Eguchi RT, King A (2016) Using remote sensing for building damage assessment: GEOCAN study and validation for 2011 Christchurch earthquake. Earthq Spectra 32(1):611–631

    Article  Google Scholar 

  • Fragiacomo M, Amadio C, Macorini L (2004) Seismic response of steel frames under repeated earthquake ground motions. Eng Struct 26(13):2021–2035

    Article  Google Scholar 

  • Fu CH (2012) A study on long-period acceleration response spectrum of ground motion affected by basin structure of Beijing. Doctoral dissertation of the Institute of Geophysics, China Earthquake Administration, Beijing. (付长华(2012) 北京盆地结构对长周期地震动加速度反应谱的影响. 北京: 中国地震局地球物理研究所博士学位论文.)

    Google Scholar 

  • Garey MR, Johnson DS (1979) Computers and intractability: a guide to the theory of NP-completeness. WH Freeman, New York, NY

    MATH  Google Scholar 

  • Gasparini D, Vanmarcke EH (1976) SIMQKE: A program for artificial motion generation. Department of Civil Engineering, Massachusetts Institute of Technology, Cambridge, MA

    Google Scholar 

  • GB 18306–2015 (2015) Seismic Ground Motion Parameters Zonation Map of China (GB 18306–2015). China Architecture & Building Press, Beijing. (GB 18306–2015 (2015) 中国地震动参数区划图 (GB 18306–2015). 北京: 中国标准出版社)

    Google Scholar 

  • GB/T 17742–2008 (2008) The Chinese Seismic Intensity Scale (GB/T 17742–2008). Standardization Administration of China, Beijing, China. (GB/T 17742–2008 (2008). 中国地震烈度表 (GB/T 17742–2008). 北京: 中国标准出版社)

    Google Scholar 

  • Goda K (2012) Nonlinear response potential of mainshock–aftershock sequences from Japanese earthquakes. Bull Seismol Soc Am 102(5):2139–2156

    Article  Google Scholar 

  • Goda K, Salami MR (2014) Inelastic seismic demand estimation of wood-frame houses subjected to mainshock–aftershock sequences. Bull Earthq Eng 12(2):855–874

    Article  Google Scholar 

  • Goda K, Taylor CA (2012) Effects of aftershocks on peak ductility demand due to strong ground motion records from shallow crustal earthquakes. Earthq Eng Struct Dyn 41(15):2311–2330

    Google Scholar 

  • Graves RW, Pitarka A (2010) Broadband ground-motion simulation using a hybrid approach. Bull Seismol Soc Am 100(5A):2095–2123

    Article  Google Scholar 

  • Guo G, Zhang J, Yorke-Smith N, (2013) A novel bayesian similarity measure for recommender systems. In: The twenty-third international joint conference on artificial intelligence, 3–9 Aug 2013, Beijing, China

    Google Scholar 

  • Gusella L, Adams BJ, Bitelli G, Huyck CK, Mognol A (2005) Object-oriented image understanding and post-earthquake damage assessment for the 2003 Bam, Iran, earthquake. Earthq Spectra 21(S1):225–238

    Article  Google Scholar 

  • Haddadi H, Shakal A, Huang M, Parrish J, Stephens C, Savage WU, Leith WS (2012) Report on progress at the Center for Engineering Strong Motion Data (CESMD). In: The 15th world conference on earthquake engineering. Lisbon, Portugal, pp 24–28

    Google Scholar 

  • Hatzigeorgiou GD, Beskos DE (2009) Inelastic displacement ratios for SDOF structures subjected to repeated earthquakes. Eng Struct 31(11):2744–2755

    Article  Google Scholar 

  • Hatzivassiliou M, Hatzigeorgiou GD (2015) Seismic sequence effects on three-dimensional reinforced concrete buildings. Soil Dyn Earthq Eng 72:77–88

    Article  Google Scholar 

  • Hori M, Ichimura T (2008) Current state of integrated earthquake simulation for earthquake hazard and disaster. J Seismol 12(2):307–321

    Article  Google Scholar 

  • Hori M, Ichimura T, Wijerathne L, Ohtani H, Chen J, Fujita K, Motoyama H (2018) Application of high performance computing to earthquake hazard and disaster estimation in urban area. Front Built Environ 4:1

    Article  Google Scholar 

  • Hosseinpour F, Abdelnaby AE (2017) Effect of different aspects of multiple earthquakes on the nonlinear behavior of RC structures. Soil Dyn Earthq Eng 92:706–725

    Article  Google Scholar 

  • Hu JJ, Zhang Q, Jiang ZJ, Xie LL, Zhou BF, (2016) Characteristics of strong ground motions in the 2014 Ms 6.5 Ludian earthquake, Yunnan, China. J Seismol20(1), 361–373

    Google Scholar 

  • Hua J, Hou G, Liu X (2005) Study of the active faults generating the earthquake of ML 6.5 in the west of Beijing in 1730. Acta Scicentiarum Naturalum Universitis Pekinesis 41(4):530–535

    Google Scholar 

  • Huan W, Shi Z, Yang Y (1996) The Yuanming Park earthquake in Beijing in 1730. J Seismol Res 19(3):260–266. (环文林, 时振梁, 杨玉林 (1996). 1730年北京圆明园地震. 地震研究, 19(3):260–266)

    Google Scholar 

  • Hutt CM, Almufti I, Willford M, Deierlein G (2015) Seismic loss and downtime assessment of existing tall steel-framed buildings and strategies for increased resilience. J Struct Eng 142(8):C4015005

    Article  Google Scholar 

  • Isumi M, Nomura N, Shibuya T (1985) Simulation of postearthquake restoration of lifeline systems. Int J Mass Emergencies Disasters 3(1):87–105

    Article  Google Scholar 

  • Jaiswal K, Wald DJ (2011) Rapid estimation of the economic consequences of global earthquakes, Report No 2011–1116. US Geological Survey, Reston, Virginia

    Google Scholar 

  • Jamnani HH, Amiri JV, Rajabnejad H (2018) Energy distribution in RC shear wall-frame structures subject to repeated earthquakes. Soil Dyn Earthq Eng 107:116–128

    Article  Google Scholar 

  • Kale Ö, Akkar S (2017) A ground-motion logic-tree scheme for regional seismic hazard studies. Earthq Spectr 33(3):837–856

    Article  Google Scholar 

  • Kim B, Shin M (2017) A model for estimating horizontal aftershock ground motions for active crustal regions. Soil Dyn Earthq Eng 92:165–175

    Article  Google Scholar 

  • Kwon O, Elnashai A (2006) The effect of material and ground motion uncertainty on the seismic vulnerability curves of RC structure. Eng Struct 28(2):289–303

    Article  Google Scholar 

  • Li M, Zang S, Zhang B, Li S, Wu C (2014) A review of remote sensing image classification techniques: the role of spatio-contextual information. Eur J Remote Sens 47(1):389–411

    Article  Google Scholar 

  • Li QW, Ellingwood BR (2007) Performance evaluation and damage assessment of steel frame buildings under mainshock–aftershock earthquake sequences. Earthq Eng Struct Dyn 36(3):405–427

    Article  Google Scholar 

  • Lin P, Wang N (2016) Building portfolio fragility functions to support scalable community resilience assessment. Sustain Resilient Infrastruct 1(3–4):108–122

    Article  Google Scholar 

  • Lin XC, Zhang HY, Chen HF, Chen H, Lin JQ (2015) Field investigation on severely damaged aseismic buildings in 2014 Ludian earthquake. Earthq Eng Eng Vib 14(1):169–176

    Article  Google Scholar 

  • Lu H, Zhao F, (2007) Site coefficients suitable to China site category. Acta Seismologica Sinica 29(1):67–76 (吕红山, 赵凤新, (2007) 适用于中国场地分类的地震动反应谱放大系数. 地震学报, 29(1): 67–76)

    Google Scholar 

  • Lu XZ (2018) Damage capacity of the ground motions of the Dec 1, Alaska Earthquake. https://peer.berkeley.edu/sites/default/files/1201alaska_rport_en.pdf. Accessed 12 Jan 2020

  • Lu XZ, Cheng QL, Xu Z, Xu YJ, Sun CJ (2019) Real-time city-scale time-history analysis and its application in resilience-oriented earthquake emergency responses. Appl Sci 9(17):3497. https://doi.org/10.3390/app9173497

    Article  Google Scholar 

  • Lu XZ, Cheng QL, Xu Z, Xiong C (2020) Regional seismic-damage prediction of buildings under mainshock—aftershock sequence. Front Eng Manag Accep. https://doi.org/10.1007/s42524-019-0072-x

    Article  Google Scholar 

  • Lu XZ, Gu DL, Lin XC, Cheng QL, Zhang L, Tian Y, Zeng X (2017a) Seismic damage assessment of the ground motion near the epicenter of the 7.0 earthquake in Jiuzhaigou, Sichuan. Stand Eng Constr pp 68–73. (陆新征, 顾栋炼, 林旭川, 程庆乐, 张磊, 田源, 曾翔, (2017) 2017.08.08四川九寨沟7.0级地震震中附近地面运动破坏力分析. 工程建设标准化, (8):68–73)

    Google Scholar 

  • Lu XZ, Guan H (2017) Nonlinear MDOF models for earthquake disaster simulation of urban buildings. Earthquake disaster simulation of civil infrastructures: from tall buildings to urban areas. Springer, Singapore, pp 257–301

    Chapter  Google Scholar 

  • Lu XZ, Han B, Hori M, Xiong C, Xu Z (2014) A coarse-grained parallel approach for seismic damage simulations of urban areas based on refined models and GPU/CPU cooperative computing. Adv Eng Softw 70:90–103

    Article  Google Scholar 

  • Lu XZ, Tian Y, Guan H, Xiong C (2017b) Parametric sensitivity study on regional seismic damage prediction of reinforced masonry buildings based on time-history analysis. Bull Earthq Eng 15(11):4791–4820

    Article  Google Scholar 

  • Lu XZ, Xie LL, Yu C, Lu X (2016) Development and application of a simplified model for the design of a super-tall mega-braced frame-core tube building. Eng Struct 110:116–126

    Article  Google Scholar 

  • Luna R, Balakrishnan N, Dagli CH (2011) Postearthquake recovery of a water distribution system: Discrete event simulation using colored petri nets. J Infrastruct Syst 17(1):25–34

    Article  Google Scholar 

  • Mahmoud SM, Lotfi A, Langensiepen C (2011) Abnormal behaviours identification for an elder’s life activities using dissimilarity measurements. In: The 4th international conference on pervasive technologies related to assistive environments, 25–27 May 2011, Crete, Greece

    Google Scholar 

  • Masi A, Santarsiero G, Digrisolo A, Chiauzzi L, Manfredi V (2016) Procedures and experiences in the post-earthquake usability evaluation of ordinary buildings. Bollettino Di Geofisica Teorica Ed Applicata 57(2):199–220

    Google Scholar 

  • McGuire RK (2008) Probabilistic seismic hazard analysis: Early history. Earthq Eng Struct Dyn 37(3):329–338

    Article  Google Scholar 

  • Miles SB, Chang SE (2006) Modeling community recovery from earthquakes. Earthq Spectra 22(2):439–458

    Article  Google Scholar 

  • Onur T, Ventura CE, Finn WDL (2006) A comparison of two regional seismic damage estimation methodologies. Can J Civ Eng 33(11):1401–1409

    Article  Google Scholar 

  • Pacific Earthquake Engineering Research Center (PEER) (2019) PEER ground motion database. Pacific Earthquake Engineering Research Center

    Google Scholar 

  • Polese M, Ludovico MD, Prota A, Manfredi G (2013) Damage-dependent vulnerability curves for existing buildings. Adv Eng Softw 42:853–870

    Google Scholar 

  • Potter SH, Becker JS, Johnston M, Rossiter KP (2015) An overview of the impacts of the 2010–2011 Canterbury earthquakes. Int J Disaster Risk Reduct 14:6–14

    Article  Google Scholar 

  • Qi W, Su G, Sun L, Yang F, Wu Y (2017) “Internet+” approach to mapping exposure and seismic vulnerability of buildings in a context of rapid socioeconomic growth: a case study in Tangshan. China. Nat Hazards 86(1):107–139

    Article  Google Scholar 

  • Ramirez CM, Miranda E (2012) Significance of residual drifts in building earthquake loss estimation. Earthq Eng Struct Dyn 41(11):1477–1493

    Article  Google Scholar 

  • Rathje EM, Adams BJ (2008) The role of remote sensing in earthquake science and engineering: opportunities and challenges. Earthq Spectra 24(2):471–492

    Article  Google Scholar 

  • Rinaldin G, Amadio C (2018) Effects of seismic sequences on masonry structures. Eng Struct 166:227–239

    Article  Google Scholar 

  • Ruiz-García J, Negrete-Manriquez JC (2011) Evaluation of drift demands in existing steel frames under as-recorded far-field and near-fault mainshock–aftershock seismic sequences. Eng Struct 33(2):621–634

    Article  Google Scholar 

  • Ruiz-García J, Yaghmaei-Sabegh S, Bojórquez E (2018) Three-dimensional response of steel moment-resisting buildings under seismic sequences. Eng Struct 175:399–414

    Article  Google Scholar 

  • Samadzadegan F, Rastiveisi H (2008) Automatic detection and classification of damaged buildings, using high resolution satellite imagery and vector data. Int Arch Photogramm Remote Sens Spat Inf Sci 37:415–420

    Google Scholar 

  • Simiu E, Scanlan RH (1996) Wind effects on structures: fundamentals and applications to design. 3rd ed. Wiley, New York, NY, USA, p 512

    Google Scholar 

  • SPUR (2012) Safe enough to stay. San Francisco Bay Area planning and urban research association, San Francisco, CA

    Google Scholar 

  • Structural Extreme Event Reconnaissance Network (StEER), Earthquake Engineering Research Institute (EERI) (2018) Alaska earthquake preliminary virtual assessment team (P-VAT) joint report. Earthquake Engineering Research Institute, Oakland, CA

    Google Scholar 

  • Tian Y, Lu X, Lu XZ, Li MK, Guan H (2016) Quantifying the seismic resilience of two tall buildings designed using Chinese and US codes. Earthq Struct 11(6):925–942

    Article  Google Scholar 

  • Turker M, Cetinkaya B (2005) Automatic detection of earthquake-damaged buildings using DEMs created from pre-and post-earthquake stereo aerial photographs. Int J Remote Sens 26(4):823–832

    Google Scholar 

  • Valensise G, Tarabusi G, Guidoboni E, Ferrari G (2017) The forgotten vulnerability: A geology- and history-based approach for ranking the seismic risk of earthquake-prone communities of the Italian Apennines. Int J Disaster Risk Reduct 25:289–300

    Google Scholar 

  • Varum H, Furtado A, Rodrigues H, Dias-Oliveira J, Vila-Pouca N, Arêde A (2017) Seismic performance of the infill masonry walls and ambient vibration tests after the Ghorka 2015. Nepal Earthq Bull Earthq Eng 15(3):1185–1212

    Article  Google Scholar 

  • Vu TT, Ban Y (2010) Context-based mapping of damaged buildings from high-resolution optical satellite images. Int J Remote Sens 31(13):3411–3425

    Article  Google Scholar 

  • Wald DJ, Quitoriano V, Heaton TH, Kanamori H (1999) Relationships between peak ground acceleration, peak ground velocity, and modified mercalli intensity in California. Earthq Spectra 15(3):557–564

    Article  Google Scholar 

  • Wan YG, Wan YK, Jin ZT, Sheng SZ, Liu ZC, Yang F, Feng T (2017) Rupture distribution of the 1976 Tangshan earthquake sequence inverted from geodetic data. Chinese J Geophys 60(6):583–601

    Article  Google Scholar 

  • Wooddell KE, Abrahamson NA (2014) Classification of main shocks and aftershocks in the NGA-West2 database. Earthq Spectra 30(3):1257–1267

    Article  Google Scholar 

  • Xie S, Duan J, Liu S, Dai Q, Liu W, Ma Y, Guo R, Ma C (2016) Crowdsourcing rapid assessment of collapsed buildings early after the earthquake based on aerial remote sensing image: a case study of Yushu earthquake. Remote Sens 8(9):759

    Article  Google Scholar 

  • Xiong C, Lu XZ, Lin XC, Xu Z, Ye LP (2017) Parameter determination and damage assessment for THA-based regional seismic damage prediction of multi-story buildings, J Earthq En 21(3):461–485

    Google Scholar 

  • Xiong C, Huang J, Lu XZ (2020) Framework for city-scale building seismic resilience simulation and repair scheduling with labor constraints driven by time–history analysis. Comput-Aided Civil Infrastruct Eng 35(4):322–341. https://doi.org/10.1111/mice.12496

  • Xu P, Wen R, Wang H, Ji K, Ren Y (2015) Characteristics of strong motions and damage implications of Ms6.5 Ludian earthquake on August 3, 2014. Earthq Sci28(1):17–24

    Google Scholar 

  • Yamazaki F, Yano Y, Matsuoka M (2005) Visual damage interpretation of buildings in Bam City using Quickbird images following the 2003 Bam, Iran, earthquake. Earthq Spectra 21(S1):329–336

    Article  Google Scholar 

  • Yeh C, Loh C, Tsai K (2006) Overview of Taiwan earthquake loss estimation system. Nat Hazards 37(1–2):23–37

    Article  Google Scholar 

  • Yin ZQ (1996) Classification of structure vulnerability and evaluating earthquake damage from future earthquake. Earthq Res China 12(1). (尹之潜 (1996) 结构易损性分类和未来地震灾害估计. 中国地震, 12(1):49–55)

    Google Scholar 

  • Yu YX (2002) Study on attenuation relationships of long period ground motions. Doctoral dissertation of the Institute of Geophysics, China Earthquake Administration, Beijing, China (俞言祥 (2002) 长周期地震动衰减关系研究. 北京: 中国地震局地球物理研究所博士学位论文).

    Google Scholar 

  • Zeng X, Lu XZ, Yang TY, Xu Z (2016) Application of the FEMA-P58 methodology for regional earthquake loss prediction. Nat Hazards 83(1):177–192

    Article  Google Scholar 

  • Zhai CH, Ji DF, Wen WP, Lei WD, Xie LL, Gong MS (2016) The inelastic input energy spectra for main shock–aftershock sequences. Earthq Spectra 32(4):2149–2166

    Article  Google Scholar 

  • Zhai CH, Wen WP, Li S, Chen ZQ, Chang ZW, Xie LL (2014) The damage investigation of inelastic SDOF structure under the mainshock–aftershock sequence-type ground motions. Soil Dyn Earthq Eng 59:30–41

    Article  Google Scholar 

  • Zheng Y, Ni SD, Xie ZJ, Lv J, Ma HS, Sommerville P (2010) Strong aftershocks in the northern segment of the Wenchuan earthquake rupture zone and their seismotectonic implications. Earth Planets Space 62(11):881–886

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Science Press

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lu, X., Guan, H. (2021). Post-earthquake Emergency Response and Recovery Through City-Scale Nonlinear Time-History Analysis. In: Earthquake Disaster Simulation of Civil Infrastructures. Springer, Singapore. https://doi.org/10.1007/978-981-15-9532-5_11

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9532-5_11

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9531-8

  • Online ISBN: 978-981-15-9532-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics