Skip to main content

Mechanism of the Effect of Protein Phosphorylation on Calpain Activity

  • Chapter
  • First Online:
Protein Phosphorylation and Meat Quality
  • 223 Accesses

Abstract

μ-Calpain is the key enzyme in postmortem meat tenderization. Studies have shown that μ-calpain can be phosphorylated and phosphorylation influences the activity of μ-calpain. However, whether μ-calpain can be phosphorylated in postmortem muscles and the possible relative influencing mechanism remains unknown. The longissimus lumborum (LL) muscles were used in this research. The relationship between phosphorylation level of sarcoplasmic proteins, μ-calpain activity, and calpastatin degradation in mutton with different tenderness was analyzed. Alkaline phosphatase and phosphatase inhibitor were used to modulate the phosphorylation level of sarcoplasmic proteins, and the effect of phosphorylation of sarcoplasmic proteins on μ-calpain activity was studied. The phosphorylation level of μ-calpain was regulated in vitro, and the influence of dephosphorylation and phosphorylation of μ-calpain on μ-calpain activity was investigated. The changes in the secondary structure of μ-calpain were studied and the phosphorylation sites of μ-calpain were identified to illustrate the directly regulatory mechanism of μ-calpain activity by phosphorylation. The effects of calpastatin on phosphorylated μ-calpain and the effects of phosphorylated calpastatin on μ-calpain were also analyzed. The study of the effects of phosphorylation on the interaction between calpastatin and μ-calpain clarified the indirectly regulatory mechanism of phosphorylation on μ-calpain activity.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Beaufort, A., Cardinal, M., Le-Bail, A., & Midelet-Bourdin, G. (2009). The effects of superchilled storage at −2 °C on the microbiological and organoleptic properties of cold-smoked Salmon before retail display. International Journal of Refrigeration, 32, 1850–1857.

    Article  CAS  Google Scholar 

  • Bee, G., Anderson, A. L., Lonergan, S. M., & Huff-Lonergan, E. (2007). Rate and extent of Ph decline affect proteolysis of cytoskeletal proteins and water-holding capacity in pork. Meat Science, 76, 359–365.

    Article  CAS  PubMed  Google Scholar 

  • Biswas, A. K., Tandon, S., & Beura, C. K. (2016). Identification of different domains of Calpain and Calpastatin from chicken blood and their role in post-mortem aging of meat during holding at refrigeration temperatures. Food Chemistry, 200, 315–321.

    Article  CAS  PubMed  Google Scholar 

  • Boehm, M. L., Kendall, T. L., Thompson, V. F., & Goll, D. E. (1998). Changes in the Calpains and Calpastatin during postmortem storage of bovine muscle. Journal of Animal Science, 76, 2415–2434.

    Article  CAS  PubMed  Google Scholar 

  • Chen, L. J., Li, X., Ni, N., Liu, Y., Chen, L., Wang, Z. Y., et al. (2016). Phosphorylation of Myofibrillar proteins in post-mortem ovine muscle with different tenderness. Journal of Science and Food Agricultural, 96, 1474–1483.

    Article  CAS  Google Scholar 

  • Claeys, E., De Smet, S., Demeyer, D., Geers, R., & Buys, N. (2001). Effect of rate of Ph decline on muscle enzyme activities in two pig lines. Meat Science, 57, 257–263.

    Article  CAS  PubMed  Google Scholar 

  • Cong, J. Y., Goll, D. E., Peterson, A. M., & Kapprell, H. P. (1989). The role of autolysis in activity of the Ca-2+−dependent proteinase (Μ-Calpain and M-Calpain). Journal of Biological Chemistry, 264, 10096–10103.

    Article  CAS  PubMed  Google Scholar 

  • Crawford, C. (1990). Protein and peptide inhibitors of Calpains. Intracellular calcium-dependent proteolysis (pp. 75–89). Boca Raton: CRC Press.

    Google Scholar 

  • Cruzen, S. M., Paulino, P. V., Lonergan, S. M., & Huff-Lonergan, E. (2014). Postmortem proteolysis in three muscles from growing and mature beef cattle. Meat Science, 96, 854–861.

    Article  CAS  PubMed  Google Scholar 

  • Demartino, G. N., Wachendorfer, R., Mcguire, M., & Croall, D. E. (1988). Proteolysis of the protein inhibitor of calcium-dependent proteases produces lower molecular weight fragments that retain inhibitory activity. Archives of Biochemistry and Biophysics, 262, 189–198.

    Article  CAS  PubMed  Google Scholar 

  • Doumit, M. E., & Koohmaraie, M. (1999). Immunoblot analysis of Calpastatin degradation: Evidence for cleavage by Calpain in postmortem muscle. Journal of Animal Science, 77, 1467–1473.

    Article  CAS  PubMed  Google Scholar 

  • Du, M. (2018). Influence mechanism of protein phosphorylation on Calpain activity[D]. Beijing: Chinese Academy of Agricultural Sciences.

    Google Scholar 

  • Du, M., Li, X., Li, Z., Li, M., Gao, L., & Zhang, D. (2017a). Phosphorylation inhibits the activity of Μ-Calpain at different incubation temperatures and Ca2+ concentrations in vitro. Food Chemistry, 228, 649–655.

    Article  CAS  PubMed  Google Scholar 

  • Du, M., Li, X., Li, Z., Shen, Q., Wang, Y., Li, G., et al. (2017b). Effects of phosphorylation on mu-Calpain activity at different incubation temperature. Food Research International, 100, 318–324.

    Article  CAS  PubMed  Google Scholar 

  • Du, M., Li, X., Li, Z., Shen, Q., Wang, Y., Li, G., et al. (2018). Phosphorylation regulated by protein kinase A and alkaline phosphatase play positive roles in mu-Calpain activity. Food Chemistry, 252, 33–39.

    Article  CAS  PubMed  Google Scholar 

  • Du, M., Li, X., Li, Z., Shen, Q., Ren, C., & Zhang, D. (2019). Calpastatin inhibits the activity of phosphorylated μ-calpain in vitro. Food Chemistry, 274, 473–479.

    Article  CAS  Google Scholar 

  • Edmunds, T., Nagainis, P. A., Sathe, S. K., Thompson, V. F., & Goll, D. E. (1991). Comparison of the autolyzed and unautolyzed forms of Μ- and M-Calpain from bovine skeletal muscle. Biochimica et Biophysica Acta, 1077, 197–208.

    Article  CAS  PubMed  Google Scholar 

  • Geesink, G. H., Bekhit, A. D., & Bickerstaffe, R. (2000). Rigor temperature and meat quality characteristics of lamb Longissimus muscle. Journal of Animal Science, 78, 2842–2848.

    Article  CAS  PubMed  Google Scholar 

  • Geesink, G. H., Kuchay, S., Chishti, A. H., & Koohmaraie, M. (2006). Μ-Calpain is essential for postmortem proteolysis of muscle proteins. Journal of Animal Science, 84, 2834–2840.

    Article  CAS  PubMed  Google Scholar 

  • Geesink, G. H., Van Der Palen, J. G. P., Kent, M. P., Veiseth, E., Hemke, G., & Koohmaraie, M. (2005). Quantification of Calpastatin using an optical surface Plasmon resonance biosensor. Meat Science, 71, 537–541.

    Article  CAS  PubMed  Google Scholar 

  • Glading, A., Bodnar, R. J., Reynolds, I. J., Shiraha, H., Satish, L., Potter, D. A., et al. (2004). Epidermal growth factor activates M-Calpain (Calpain Ii), at least in part, by extracellular signal-regulated kinase-mediated phosphorylation. Molecular and Cellular Biology, 24, 2499–2512.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Goll, D. E., Thompson, V. F., Li, H. Q., Wei, W., & Cong, J. Y. (2003). The Calpain system. Physiological Reviews, 83, 731–801.

    Article  CAS  PubMed  Google Scholar 

  • Hanna, R. A., Campbell, R. L., & Davies, P. L. (2008). Calcium-bound structure of Calpain and its mechanism of inhibition by Calpastatin. Nature, 456, 409–412.

    Article  CAS  PubMed  Google Scholar 

  • Huang, F., Huang, M., Zhang, H., Guo, B., Zhang, D., & Zhou, G. (2014). Cleavage of the Calpain inhibitor, Calpastatin, during postmortem ageing of beef skeletal muscle. Food Chemistry, 148, 1–6.

    Article  CAS  PubMed  Google Scholar 

  • Huang, H., Larsen, M. R., & Lametsch, R. (2012). Changes in phosphorylation of Myofibrillar proteins during postmortem development of porcine muscle. Food Chemistry, 134, 1999–2006.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, I. H., Park, B. Y., Cho, S. H., & Lee, J. M. (2004). Effects of muscle shortening and proteolysis on Warner-Bratzler shear force in beef Longissimus and semitendinosus. Meat Science, 68, 497–505.

    Article  CAS  PubMed  Google Scholar 

  • Hwang, I. H., & Thompson, J. M. (2001). The interaction between Ph and temperature decline early postmortem on the Calpain system and objective tenderness in electrically stimulated beef Longissimus Dorsi muscle. Meat Science, 58, 167–174.

    Article  CAS  PubMed  Google Scholar 

  • Jaturasitha, S., Thirawong, P., Leangwunta, V., & Kreuzer, M. (2004). Reducing toughness of beef from Bos Indicus Draught steers by injection of calcium chloride: Effect of concentration and time postmortem. Meat Science, 68, 61–69.

    Article  CAS  PubMed  Google Scholar 

  • Kaale, L. D., Eikevik, T. M., Rustad, T., & Kolsaker, K. (2011). Superchilling of food: A review. Journal of Food Engineering, 107, 141–146.

    Article  Google Scholar 

  • Kemp, C. M., Sensky, P. L., Bardsley, R. G., Buttery, P. J., & Parr, T. (2010). Tenderness--An enzymatic view. Meat Science, 84, 248–256.

    Article  CAS  PubMed  Google Scholar 

  • Kent, M. P., Spencer, M. J., & Koohmaraie, M. (2004). Postmortem proteolysis is reduced in transgenic mice overexpressing Calpastatin. Journal of Animal Science, 82, 794–801.

    Article  CAS  PubMed  Google Scholar 

  • Killefer, J., & Koohmaraie, M. (1994). Bovine skeletal muscle Calpastatin: Cloning, sequence analysis, and steady-state mRNA expression. Journal of Animal Science, 72, 606–614.

    Article  CAS  PubMed  Google Scholar 

  • Kim, Y. H., Luc, G., & Rosenvold, K. (2013). Pre rigor processing, ageing and freezing on tenderness and colour stability of lamb loins. Meat Science, 95(2), 412–418.

    Article  PubMed  Google Scholar 

  • Koohmaraie, M. (1992). The role of Ca2+−dependent proteases (Calpains) in Postmortem proteolysis and meat tenderness. Biochimie, 74, 239–245.

    Article  CAS  PubMed  Google Scholar 

  • Koohmaraie, M., Crouse, J. D., & Mersmann, H. J. (1989). Acceleration of postmortem tenderization in ovine carcasses through infusion of calcium chloride: Effect of concentration and ionic strength. Journal of Animal Science, 67, 934–942.

    Article  CAS  PubMed  Google Scholar 

  • Koohmaraie, M., & Geesink, G. H. (2006). Contribution of postmortem muscle biochemistry to the delivery of consistent meat quality with particular focus on the Calpain system. Meat Science, 74, 34–43.

    Article  CAS  PubMed  Google Scholar 

  • Koohmaraie, M., Schollmeyer, J. E., & Dutson, T. R. (1986). Effect of low-calcium-requiring calcium activated factor on myofibrils under varying Ph and temperature conditions. Journal of Food Science, 51, 28–32.

    Article  CAS  Google Scholar 

  • Koohmaraie, M., Whipple, G., & Crouse, J. D. (1990). Acceleration of postmortem tenderization in lamb and Braham-cross beef carcasses through infusion of calcium chloride. Journal of Animal Science, 67, 1278–1283.

    Google Scholar 

  • Lee, W. J., Ma, H., Takano, E., Yang, H. Q., Hatanaka, M., & Maki, M. (1992). Molecular diversity in amino-terminal domains of human Calpastatin by exon skipping. Journal of Biological Chemistry, 267, 8437–8442.

    Article  CAS  PubMed  Google Scholar 

  • Leloup, L., Shao, H., Bae, Y. H., Deasy, B., Stolz, D., Roy, P., et al. (2010). M-Calpain activation is regulated by its membrane localization and by its binding to phosphatidylinositol 4,5-Bisphosphate. Journal of Biological Chemistry, 285, 33549–33566.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Li, C., Zhou, G. H., Xu, X. L., Lundstrom, K., Karlsson, A., & Lametsch, R. (2015). Phosphoproteome analysis of sarcoplasmic and myofibrillar proteins in bovine longissimus muscle in response to Postmortem electrical stimulation. Food Chemistry, 175, 197–202.

    Article  CAS  PubMed  Google Scholar 

  • Li, M., Li, X., Xin, J., Li, Z., Li, G., Zhang, Y., et al. (2017). Effects of protein phosphorylation on color stability of ground meat. Food Chemistry, 219, 304–310.

    Article  CAS  PubMed  Google Scholar 

  • Li, P., Li, X., Li, Z., Chen, L., Li, Z., Chen, L., et al. (2016). Effects of controlled freezing point storage on aging from muscle to meat. Scientia Agricultura Sinica, 49, 554–562.

    CAS  Google Scholar 

  • Liu, Q., Kong, B., Han, J., Chen, Q., & He, X. (2014). Effects of superchilling and cryoprotectants on the quality of common carp (Cyprinus Carpio) Surimi: Microbial growth, oxidation, and physiochemical properties. LWT - Food Science and Technology, 57, 165–171.

    Article  CAS  Google Scholar 

  • Lomiwes, D., Farouk, M. M., Wu, G., & Young, O. A. (2014a). The development of meat tenderness is likely to be compartmentalised by ultimate Ph. Meat Science, 96, 646–651.

    Article  CAS  PubMed  Google Scholar 

  • Lomiwes, D., Hurst, S. M., Dobbie, P., Frost, D. A., Hurst, R. D., Young, O. A., et al. (2014b). The protection of bovine skeletal myofibrils from proteolytic damage post mortem by small heat shock proteins. Meat Science, 97, 548–557.

    Article  CAS  PubMed  Google Scholar 

  • Longo, V., Lana, A., Bottero, M. T., & Zolla, L. (2015). Apoptosis in muscle-to-meat aging process: The Omic witness. Journal of Proteomics, 125, 29–40.

    Article  CAS  PubMed  Google Scholar 

  • Maddock, K. R., Huff-Lonergan, E., Rowe, L. J., & Lonergan, S. M. (2005). Effect of Ph and ionic strength on Calpastatin inhibition of Μ- and M-Calpain. Journal of Animal Science, 83, 1370–1376.

    Article  CAS  PubMed  Google Scholar 

  • Marsh, B. B., Ringkob, T. P., Russell, R. L., Swartz, D. R., & Pagel, L. A. (1987). Effects of early-postmortem glycolytic rate on beef tenderness. Meat Science, 21, 241–248.

    Article  CAS  PubMed  Google Scholar 

  • Melody, J. L., Lonergan, S. M., Rowe, L. J., Huiatt, T. W., Mayes, M. S., & Huff Lonergan, E. (2004). Early postmortem biochemical factors influence tenderness and water-holding capacity of three porcine muscles. Journal of Animal Science, 82, 1195–1205.

    Article  CAS  PubMed  Google Scholar 

  • Mohrhauser, D. A., Lonergan, S. M., Huff-Lonergan, E., Underwood, K. R., & Weaver, A. D. (2014). Calpain-1 activity in bovine muscle is primarily influenced by temperature, not Ph decline. Journal Animal Science, 92, 1261–1270.

    Article  CAS  Google Scholar 

  • Moldoveanu, T., Gehring, K., & Green, D. R. (2008). Concerted multi-pronged attack by Calpastatin to occlude the catalytic cleft of Heterodimeric Calpains. Nature, 456, 404–408.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • O’Halloran, G. R., Troy, D. J., Buckley, D. J., & Reville, W. J. (1997). The role of endogenous proteases in the tenderisation of fast glycolysing muscle. Meat Science, 47(3-4), 187–210.

    Article  PubMed  Google Scholar 

  • Ohno, S., Emori, Y., & Suzuki, K. (1986). Nucleotide sequence of a cDNA coding for the small subunit of Human calcium-dependent protease. Nucleic Acids Research, 14, 5559.

    CAS  PubMed  PubMed Central  Google Scholar 

  • Pomponio, L., & Ertbjerg, P. (2012). The effect of temperature on the activity of mu- and M-Calpain and Calpastatin during post-mortem storage of porcine Longissimus muscle. Meat Science, 91, 50–55.

    Article  CAS  PubMed  Google Scholar 

  • Pomponio, L., Lametsch, R., Karlsson, A. H., Costa, L. N., Grossi, A., & Ertbjerg, P. (2008). Evidence for post-mortem M-Calpain autolysis in porcine muscle. Meat Science, 80, 761–764.

    Article  CAS  PubMed  Google Scholar 

  • Pulford, D. J., Dobbie, P., Fraga Vazquez, S., Fraser-Smith, E., Frost, D. A., & Morris, C. A. (2009). Variation in bull beef quality due to ultimate muscle Ph is correlated to Endopeptidase and small heat shock protein levels. Meat Science, 83, 1–9.

    Article  CAS  PubMed  Google Scholar 

  • Reverter, D., Sorimachi, H., & Bode, W. (2001). The structure of calcium-free human M-Calpain implications for calcium activation and function. Trends in Cardiovascular Medicine, 11, 222–229.

    Article  CAS  PubMed  Google Scholar 

  • Rhee, M. S., Ryu, Y. C., & Kim, B. C. (2006). Postmortem metabolic rate and Calpain system activities on beef Longissimus tenderness classifications. Bioscience Biotechnology And Biochemistry, 70, 1166–1172.

    Article  CAS  PubMed  Google Scholar 

  • Salamino, F., Tullio, R. D., Michetti, M., et al. (1994). Modulation of calpastatin specificity in rat tissues by reversible phosphorylation and dephosphorylation. Biochemical and biophysical research communications, 199(3), 1326–1322.

    Article  CAS  PubMed  Google Scholar 

  • Shao, H., Chou, J., Baty, C. J., Burke, N. A., Watkins, S. C., Stolz, D. B., et al. (2006). Spatial localization of M-Calpain to the plasma membrane by Phosphoinositide Biphosphate binding during epidermal growth factor Receptor mediated activation. Molecular & Cellular Biology, 26, 5481–5496.

    Article  CAS  Google Scholar 

  • Sharma, U., Pal, D., & Prasad, R. (2014). A novel role of alkaline phosphatase in the Erk1/2 Dephosphorylation in renal cell carcinoma cell lines: A new plausible therapeutic target. Biochimie, 107, 406–409.

    Article  CAS  PubMed  Google Scholar 

  • Shiraha, H., Glading, A., Chou, J., Jia, Z., & Wells, A. (2002). Activation of M-Calpain (Calpain Ii) by epidermal growth factor is limited by protein kinase a phosphorylation of M-Calpain. Molecular and Cellular Biology, 22, 2716–2727.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Storr, S. J., Carragher, N. O., Frame, M. C., Parr, T., & Martin, S. G. (2011). The Calpain system and cancer. Nature Reviews Cancer, 11, 364–374.

    Article  CAS  PubMed  Google Scholar 

  • Strobl, S., Fernandez-Catalan, C., Braun, M., Huber, R., Masumoto, H., Nakagawa, K., et al. (2000). The crystal structure of calcium-free human M-Calpain suggests an electrostatic switch mechanism for activation by calcium. Proceedings of the National Academy of Science of the United States of America, 97, 588–592.

    Article  CAS  Google Scholar 

  • Vazquez, R., Wendt, A. S., Thompson, V. F., Novak, S. M., Ruse, C., Yates, J. R., et al. (2008). Phosphorylation of the Calpains. The FASEB Journal, 22, 793.5.

    Google Scholar 

  • Whipple, G., Koohmaraie, M., Dikeman, M. E., & Crouse, J. D. (1990). Effects of high temperature conditioning on enzymatic-activity and tenderness of Bos-Indicus Longissimus muscle. Journal of Animal Science, 68, 3654–3662.

    Article  CAS  PubMed  Google Scholar 

  • Xu, L., & Deng, X. (2004). Tobacco-specific nitrosamine 4-(Methylnitrosamino)-1-(3-Pyridyl)-1-butanone induces phosphorylation of mu- and M-Calpain in association with increased secretion, cell migration, and invasion. Journal of Biological Chemistry, 279, 53683–53690.

    Article  CAS  PubMed  Google Scholar 

  • Xu, L., & Deng, X. (2006a). Protein kinase Ciota promotes nicotine-induced migration and invasion of cancer cells via phosphorylation of micro- and M-Calpains. Journal of Biological Chemistry, 281, 4457–4466.

    Article  CAS  PubMed  Google Scholar 

  • Xu, L., & Deng, X. (2006b). Suppression of cancer cell migration and invasion by protein phosphatase 2a through dephosphorylation of Mu- and M-Calpains. Journal of Biological Chemistry, 281, 35567–35575.

    Article  CAS  PubMed  Google Scholar 

  • Zhang, Y., Li, X., Li, Z., Li, M., Liu, Y., & Zhang, D. (2016). Effects of controlled freezing point storage on the protein phosphorylation level. Scientia Agricultura Sinica, 49, 4429–4440.

    Google Scholar 

Download references

Acknowledgments

Parts of this chapter are reprinted from Food Chemistry, 228, Du, M., et al. Phosphorylation inhibits the activity of μ-calpain at different incubation temperatures and Ca2+ concentrations in vitro, 649–655; Food Research International, 100, Du, M., et al. Effects of phosphorylation on μ-calpain activity at different incubation temperature, 318–324; Food Chemistry, 252, Du, M. et al., Phosphorylation regulated by protein kinase A and alkaline phosphatase play positive roles in μ-calpain activity, 33–39. Food Chemistry, 274, Du, M., et al. Calpastatin inhibits the activity of phosphorylated μ-calpain in vitro, 473–479. Copyright (2020), with permission from Elsevier.

Author information

Authors and Affiliations

Authors

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zhang, D., Li, X., Chen, L., Hou, C., Wang, Z. (2020). Mechanism of the Effect of Protein Phosphorylation on Calpain Activity. In: Protein Phosphorylation and Meat Quality. Springer, Singapore. https://doi.org/10.1007/978-981-15-9441-0_8

Download citation

Publish with us

Policies and ethics