Skip to main content

Molecular Magnetism of Metal Complexes and Light-Induced Phase Transitions

  • Chapter
  • First Online:
Modern Mössbauer Spectroscopy

Part of the book series: Topics in Applied Physics ((TAP,volume 137))

Abstract

One of the most attractive research in the field of molecular solids is multifunctional molecular magnets coupled with spin, charge and photon, and single-molecular magnet/single-chain magnet toward spintronics. In this chapter, we focus on the molecular magnetism and its related light-induced phase transitions from the viewpoint of Mössbauer spectroscopy. In the Sect. 6.1, the outline of this chapter is described. In the Sect. 6.2, static and dynamic spin crossover phenomena between the high-spin and low-spin states, and the spin frustration system induced by dynamic spin crossover phenomena for [MnIIFeIII(C2O3S)3] complex are described. In the Sect. 6.3, metal complexes showing charge transfer phase transitions such as Prussian blue analogous complexes and [FeIIFeIII(C2O2S2)3] complexes and their photo-induced phase transitions are described. In the Sect. 6.4, various kinds of molecular magnets including single molecular chain magnets are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 139.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 179.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 179.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Abbreviations

CTPT:

Charge transfer phase transition

CTIST:

Charge transfer induced spin transition

IVCT:

Inter-valence charge transfer

HS:

High spin

LS:

Low spin

HTP:

High temperature phase

LTP:

Low temperature phase

IS :

Isomer shift

QS :

Quadrupole splitting

LIESST:

Light induced excited spin state trapping

T CT :

Critical temperature of charge transfer phase transition

SP:

Spiropyran

SMMs:

Single-molecule magnets

SCMs:

Single-chain magnets

SIMs:

Single-ion magnets

QTM:

Quantum tunneling of magnetization.

References

  1. (a) P. Gütlich, H.A. Goodwin (Ed.), Spin Crossover in Transition Metal Compounds I, II, III (Springer, 2004). (b) M.A. Halcrow (Ed.), Spin-Crossover Materials: Properties and Applications (Wiley, 2013). (c) J.-P. Launay, M. Verdaguer, Electronics in Molecules: From Basic Principles to Molecular Electronics (Oxford University Press, 2013). (d) D. Gatteschi, R. Sessoli, J. Villain, Molecular Nanomagnets (Oxford University Press, 2006). (e) R. Winpenny, G. Aromi (Ed.), Single-Molecule Magnets and Related Phenomena (Springer, 2006). (f) M. Holynska (Ed.), Single-Molecule Magnets: Molecular Architectures and Building Blocks for Spintronics (Wiley, 2018)

    Google Scholar 

  2. (a) N. Kojima, M. Enomoto, N. Kida, K. Kagesawa, Materials, 3, 3141 (2010). (b) N. Kojima, M. Itoi, Y. Miyazaki, Curr. Inorg. Chem. 4, 85 (2014). (c) N. Kojima, A. Sugahara, Spin-crossover and related phenomena coupled with spin, photon and charge, in Mössbauer Spectroscopy: Applications in Chemistry, Biology and Nanotechnology. ed. by V.K. Sharma, C. Klingelhöfer, T. Nishida (Wiley Inc., 2013), pp. 152–176

    Google Scholar 

  3. K. Kagesawa, A. Okazawa, M. Enomoto, N. Kojima, Chem. Lett. 39, 872 (2010)

    Article  Google Scholar 

  4. N. Kojima, W. Aoki, M. Itoi, M. Seto, Y. Kobayashi, Yu. Maeda, Solid State Commun. 120, 165 (2001)

    Article  ADS  Google Scholar 

  5. N. Kida, M. Enomoto, I. Watanabe, T. Suzuki, N. Kojima, Phys. Rev. B 77, 144427 (2008)

    Article  ADS  Google Scholar 

  6. M. Itoi, Y. Ono, N. Kojima, K. Kato, K. Osaka, M. Takata, Eur. J. Inorg. Chem. 1198 (2006)

    Google Scholar 

  7. (a) N. Kida, M. Hikita, I. Kashima, M. Okubo, M. Itoi, M. Enomoto, K. Kato, M. Takata, N. Kojima, J. Am. Chem. Soc. 131 212 (2009). (b) N. Kida, M. Hikita, I. Kashima, M. Enomoto, M. Itoi, N. Kojima, Polyhedron 28, 1694 (2009)

    Google Scholar 

  8. Y. Tanabe, S. Sugano, J. Phys. Soc. Jpn. 9, 766 (1954)

    Article  ADS  Google Scholar 

  9. (a) L. Cambi, A. Cagnasso, Atti Accad. Naz. Lincei. 13 809 (1931). (b) L. Cambi, L. Szegö, A. Cagnasso, Atti Accad. Naz. Lincei. 15, 266 (1932). (c) L. Cambi, L. Szegö, Ber. Deutsch. Chem. Ges. 66, 656 (1933)

    Google Scholar 

  10. J.M. Fiddy, I. Hall, F. Gradjean, U. Russo, G.J. Long, Inorg. Chem. 26, 4138 (1987)

    Article  Google Scholar 

  11. (a) K.R. Kunze, D.L. Perry, L.J. Wilson, Inorg. Chem. 16, 594 (1977). (b) H. Oshio, Y. Maeda, Y. Takahashi, Inorg. Chem. 22, 2684 (1983). (c) Y. Maeda, N. Tsutsumi, Y. Takahashi, Inorg. Chem. 23, 2440 (1984). (d) M.D. Timken, A.M. Abdel-Mawgoud, D.N. Hendrickson, Inorg. Chem. 25, 160 (1985). (e) M. Nihei, T. Shiga, Y. Maeda, H. Oshio, Coord. Chem. Rev. 251, 2606 (2007)

    Google Scholar 

  12. W.A. Baker, H. Bobonich, Inorg. Chem. 3, 1184 (1964)

    Article  Google Scholar 

  13. P. Gütlich, H.A. Goodwin (Ed.), Spin Crossover in Transition Metal Compounds I (Springer-Verlag, Berlin Heidelberg, Germany, 2004), and related references therein

    Google Scholar 

  14. (a) I. Krivokapic, M. Zerara, M.L. Daku, A. Vargas, C. Enachescu, C. Ambrus, P. Tregenna-Piggott, N. Amstutz, E. Krausz, A. Hauser, Coord. Chem. Rev. 251, 364 (2007). (b) H.A. Goodwin, in Spin Crossover in Transition Metal Compounds II, ed. by P. Gütlich, H.A. Goodwin (Springer-Verlag, Berlin Heidelberg, Germany, 2004), pp. 23–48

    Google Scholar 

  15. Y. Garcia, P. Gütlich, in Spin Crossover in Transition Metal Compounds II, ed. by P. Gütlich, H.A. Goodwin (Springer-Verlag, Berlin Heidelberg, Germany, 2004), pp. 49–62

    Google Scholar 

  16. (a) P.L. Franke, J.G. Haasnoot, A.P. Zuur, Inorg. Chim. Acta 59, 5 (1982). (b) S. Decurtins, P. Gütlich, C.P. Köhler, H. Spiering, A. Hauser, Chem. Phys. Lett. 105, 1 (1984). (c) S. Decurtins, P. Gütlich, K.M. Hasselbach, A. Hauser, H. Spiering, Inorg. Chem. 24, 2174 (1985)

    Google Scholar 

  17. (a) P. Gütlich, H.A. Goodwin (Ed.) Spin Crossover in Transition Metal Compounds I, II, IIII, (Springer-Verlag, Berlin Heidelberg, Germany, 2004). (b) O. Sato, J. Tao, Y.-Z. Zhang, Angew. Chem. Int. Ed. 46, 2152 (2007), and related references therein

    Google Scholar 

  18. M. Cox, J. Darken, B.W. Fitzsimmons, A.W. Smith, L.F. Larkworthy, K.A. Rogers, J. Chem. Soc. Dalton Trans. 1192 (1972)

    Google Scholar 

  19. K.R. Kunze, D.L. Perry, L.J. Wilson, Inorg. Chem. 16, 594 (1977)

    Article  Google Scholar 

  20. M. Itoi, A. Taira, M. Enomoto, N. Matsushita, N. Kojima, Y. Kobayashi, K. Asai, K. Koyama, T. Nakamoto, Y. Uwatoko, J. Yamamura, Solid State Commun. 130, 415 (2004)

    Article  ADS  Google Scholar 

  21. H. Ōkawa, N. Matsumoto, H. Tamaki, M. Ohba, Mol. Cryst. Liq. Cryst. 233, 257 (1993)

    Article  Google Scholar 

  22. A. Hauser, in Spin Crossover in Transition Metal Compounds II, ed. by P. Gütlich, H.A. Goodwin (Springer-Verlag, Berlin Heidelberg, Germany, 2004), pp. 155–198

    Google Scholar 

  23. T.C. Brunold, H.U. Güdel, in Inorganic Electronic Structure and Spectroscopy I, ed. by E.I. Solomon, A.B.P. Lever (Wiley, 1999), pp. 259–306

    Google Scholar 

  24. (a) J.-F. Létard, G. Chastanet, P. Guionneau, C. Desplanches, in Spin-Crossover Materials: Properties and Applications, ed. by M.A. Halcrow (Wiley, 2013), pp. 475–506. (b) Y. Moritomo, K. Kato, A. Nakamoto, N. Kojima, E. Nishibori, M. Takata, M. Sakata, J. Phys. Soc. Jpn. 71, 1015 (2002)

    Google Scholar 

  25. (a) S.G. Carling, J.M. Bradley, D. Visser, P. Day, Polyhedron 22, 2317 (2003). (b) M. Enomoto, H. Ida, A. Okazawa, N. Kojima, Crystals 8, 446 (2018)

    Google Scholar 

  26. C. Mathonière, C.J. Nuttall, S.G. Carling, P. Day, Inorg. Chem. 35, 1201 (1996)

    Article  Google Scholar 

  27. K. Kagesawa, Doctoral Thesis, (The University of Tokyo, 2011)

    Google Scholar 

  28. M.B. Robin, P. Day, Adv. Inorg. Chem. Radiochem. 10, 247 (1967)

    Article  Google Scholar 

  29. F. Herren, P. Fischer, A. Ludi, W. Hālg, Inorg. Chem. 19, 956 (1980)

    Article  Google Scholar 

  30. A. Ito, M. Suenaga, K. Ôno, J. Chem. Phys. 48, 3597 (1968)

    Article  ADS  Google Scholar 

  31. K. Maer Jr., M.L. Beasley, R.L. Collins, W.O. Milligan, J. Am. Chem. Soc. 90, 3201 (1968)

    Article  Google Scholar 

  32. O. Sato, T. Iyoda, A. Fujishima, K. Hashimoto, Science 272, 704 (1996)

    Article  ADS  Google Scholar 

  33. O. Sato, Y. Einaga, T. Iyoda, A. Fujishima, K. Hashimoto, J. Electrochem. Soc. 144, L11 (1967)

    Article  Google Scholar 

  34. O. Sato, J. Tao, Y.-Z. Zhang, Angew. Chem. Int. Ed. 46, 2152 (2007), and related references therein

    Google Scholar 

  35. O. Sato, Y. Einaga, T. Iyoda, A. Fujishima, K. Hashimoto, J. Phys. Chem. B 101, 3903 (1997)

    Article  Google Scholar 

  36. (a) N. Shimamoto, S. Ohkoshi, O. Sato, K. Hashimoto, Inorg. Chem. 41, 678 (2002). (b) V. Escax, A. Bleuzen, C. Cartier dit Moulin, F. Villain, A. Goujon, F. Varret, M. Verdaguer, J. Am. Chem. Soc. 123, 12536 (2001). (c) A. Carolina, G.H. Matthew, P. Andrey, S. Codi, S. Darryl, R.D. Kim, J. Am. Chem. Soc. 132, 13123 (2010). (d) H. Tokoro, S. Ohkoshi, T. Matsuda, K. Hashimoto, Inorg. Chem. 43, 5231 (2004). (e) A. Bleuzen, V. Marvaud, C. Mathoniere, B. Sieklucka, M. Verdaguer, Inorg. Chem. 48, 3453 (2009). (f) S. Ohkoshi, Y. Hamada, T. Matsuda, Y. Tsunobuchi, H. Tokoro, Chem. Mater. 20, 3048 (2008). (g) R. Podgajny, S. Chorazy, W. Nitek, M. Rams, A.M. Majcher, B. Marszalek, J. Zukrowski, C. Kapusta, B. Sieklucka, Angew. Chem., Int. Ed. 52, 896 (2013), and related references therein

    Google Scholar 

  37. O. Sato, Y. Einaga, A. Fujishima, K. Hashimoto, Inorg. Chem. 38, 4405 (1999)

    Article  Google Scholar 

  38. Y. Ono, Doctoral Thesis, (The University of Tokyo, 2005)

    Google Scholar 

  39. S. Iijima, T. Katsura, H. Tamaki, M. Mitsumi, N. Matsumoto, H. Ôkawa, Mol. Cryst. Liq. Cryst. 233, 263 (1993)

    Article  Google Scholar 

  40. S. Iijima, F. Mizutani, M. Mitsumi, N. Matsumoto, H. Ôkawa, Inorg. Chim. Acta 253, 47 (1996)

    Article  Google Scholar 

  41. T. Birchall, K.M. Tun, Inorg. Chem. 15, 376 (1976)

    Article  Google Scholar 

  42. B.J. Evans, R.G. Johnson, F.E. Senftle, C.B. Cecil, F. Dulong, Geochim. Cosmochim. Acta 46, 761 (1982)

    Article  ADS  Google Scholar 

  43. T. Nakamoto, Y. Miyazaki, M. Itoi, Y. Ono, N. Kojima, M. Sorai, Angew. Chem., Int. Ed. 40, 4716 (2001)

    Google Scholar 

  44. M. Enomoto, M. Itoi, Y. Ono, M. Okubo, N. Kojima, Synth. Metals 137, 1231 (2003)

    Article  Google Scholar 

  45. Y. Kobayashi, M. Itoi, N. Kojima, K. Asai, J. Phys. Soc. Jpn. 71, 3016 (2002)

    Article  ADS  Google Scholar 

  46. K. Nagamine, Introductory Muon Science (Cambridge University Press, 2003)

    Google Scholar 

  47. R.S. Hayano, Y.J. Uemura, J. Imazato, N. Nishida, T. Yamazaki, R. Kubo, Phys. Rev. B 20, 850 (1979)

    Article  ADS  Google Scholar 

  48. R. Kadono, T. Matsuzaki, T. Yamazaki, S.R. Kreitzman, J.H. Brewer, Phys. Rev. B 42, 6515 (1990)

    Article  ADS  Google Scholar 

  49. C.P. Slichter, Principles of magnetic resonance (Harper International, New York, 1965)

    Google Scholar 

  50. N. Kojima, N. Kida, A. Okazawa, M. Enomoto, Mössbauer Eff. Ref. Data J. 35, 154 (2012)

    Google Scholar 

  51. H. Nakamichi, T. Okada, Angew. Chem., Int. Ed. 45, 4270 (2006), and related references therein

    Google Scholar 

  52. R. Sessoli, D. Gatteschi, A. Caneschi, M.A. Novak, Nature 365, 141 (1993)

    Article  ADS  Google Scholar 

  53. T. Lis, Acta Crystallogr. B 36, 2042 (1980)

    Article  Google Scholar 

  54. A. Caneschi, D. Gatteschi, R. Sessoli, A.L. Barra, L.C. Brunel, M. Guillot, J. Am. Chem. Soc. 113, 5873 (1991)

    Article  Google Scholar 

  55. R. Sessoli, H.L. Tsai, A.R. Schake, S. Wang, J.B. Vincent, K. Folting, D. Gatteschi, G. Christou, D.N. Hendrickson, J. Am. Chem. Soc. 115, 1804 (1993)

    Article  Google Scholar 

  56. J.R. Friedman, M.P. Sarachik, J. Tejada, J. Maciejewski, R. Ziolo, J. Appl. Phys. 79, 6031 (1996)

    Article  ADS  Google Scholar 

  57. J.R. Friedman, M.P. Sarachik, J. Tejada, R. Ziolo, Phys. Rev. Lett. 76, 3830 (1996)

    Article  ADS  Google Scholar 

  58. L. Thomas, F. Lionti, R. Ballou, D. Gatteschi, R. Sessoli, B. Barbara, Nature 383, 145 (1996)

    Article  ADS  Google Scholar 

  59. T. Kuroda-Sowa, M. Lam, A.L. Rheingold, C. Frommen, W.M. Reiff, M. Nakano, J. Yoo, A.L. Maniero, L.-C. Brunel, G. Christou, D.N. Hendrickson, Inorg. Chem. 40, 6469 (2001)

    Article  Google Scholar 

  60. D. Gatteschi, R. Sessoli, A. Cornia, Chem. Commun. 725 (2000)

    Google Scholar 

  61. A.L. Barra, A. Caneschi, A. Cornia, F. Fabrizi de Biani, D. Gatteschi, C. Sangregorio, R. Sessoli, L. Sorace, J. Am. Chem. Soc. 121, 5302 (1999)

    Article  Google Scholar 

  62. C. Sangregorio, T. Ohm, C. Paulsen, R. Sessoli, D. Gatteschi, Phys. Rev. Lett. 78, 4645 (1997)

    Article  ADS  Google Scholar 

  63. A.L. Barra, P. Debrunner, D. Gatteschi, C.E. Schulz, R. Sessoli, Europhys. Lett. 35, 133 (1996)

    Article  ADS  Google Scholar 

  64. L. Cianchi, G. Spina, Studies of spin fluctuations in single molecular magnets by using Mössbauer spectroscopy, ed. by P. Carrette, A. Lascialfari, NMR-MRI, μSR and Mössbauer Spectroscopies in Molecular Magnets (Springer-Velrag, Milano, 2007)

    Google Scholar 

  65. C. Delfs, D. Gatteschi, L. Pardi, R. Sessoli, K. Wieghardt, D. Hanke, Inorg. Chem. 32, 3099 (1993)

    Article  Google Scholar 

  66. A. Cini, M. Mannini, F. Totti, M. Fittipaldi, G. Spina, A. Chumakov, R. Rüffer, A. Cornia, R. Sessoli, Nat. Commun. 9, 480 (2018)

    Article  ADS  Google Scholar 

  67. A.M. LaPointe, Inorg. Chim. Acta 345, 359 (2003)

    Article  Google Scholar 

  68. T. Viefhaus, W. Schwarz, K. Hübler, K. Locke, J. Weidlein, Z. Anorg, Allg. Chem. 627, 715 (2001)

    Article  Google Scholar 

  69. N.N. Greenwood, T.C. Gibb, Mössbuaer Spectroscopy (Chapman and Hall, London, 1971)

    Book  Google Scholar 

  70. W.M. Reiff, A.M. LaPointe, E.H. Witten, J. Am. Chem. Soc. 126, 10206 (2004)

    Article  Google Scholar 

  71. J.M. Zadrozny, M. Atanasov, A.M. Bryan, C.-Y. Lin, B.D. Rekken, P.P. Power, F. Neese, J.R. Long, Chem. Sci. 4, 125 (2013)

    Article  Google Scholar 

  72. J.M. Zadrozny, D.J. Xiao, J.R. Long, M. Atanasov, F. Neese, F. Grandjean, G.J. Long, Inorg. Chem. 52, 13123 (2013)

    Article  Google Scholar 

  73. S. Dattagupta, M. Blume, Phys. Rev. B 10, 4540 (1974)

    Article  ADS  Google Scholar 

  74. K.S. Cole, R.H. Cole, J. Chem. Phys. 9, 341 (1941)

    Article  ADS  Google Scholar 

  75. S.M.J. Aubin, Z. Sun, L. Pardi, J. Krzystek, K. Folting, L.-C. Brunel, A.L. Rheingold, G. Christou, D.N. Hendrickson, Inorg. Chem. 38, 5329 (1999)

    Article  Google Scholar 

  76. P.P. Power, Chem. Rev. 112, 3482 (2012)

    Article  Google Scholar 

  77. N.F. Chilton, H. Lei, A.M. Bryan, F. Grandjean, G.J. Long, P.P. Power, Dalton Trans. 44, 11202 (2015)

    Article  Google Scholar 

  78. S. Goda, M. Nikai, M. Ito, D. Hashizume, K. Tamao, A. Okazawa, N. Kojima, H. Fueno, K. Tanaka, Y. Kobayashi, T. Matsuo, Chem. Lett. 45, 634 (2016)

    Article  Google Scholar 

  79. A.M. Bryan, C.-Y. Lin, M. Sorai, Y. Miyazaki, H.M. Hoyt, A. Hablutzel, A. LaPointe, W.M. Reiff, P.P. Power, C.E. Schulz, Inorg. Chem. 53, 12100 (2014)

    Article  Google Scholar 

  80. W.M. Reiff, C.E. Schulz, M.-H. Whangbo, J.I. Seo, Y.S. Lee, G.R. Potratz, C.W. Spicer, G.S. Girolami, J. Am. Chem. Soc. 131, 404 (2009)

    Article  Google Scholar 

  81. W.A. Merrill, T.A. Stich, M. Brynda, G.J. Yeagle, J.C. Fettinger, R. De Hont, W.M. Reiff, C.E. Schulz, R.D. Britt, P.P. Power, J. Am. Chem. Soc. 131, 12693 (2009)

    Article  Google Scholar 

  82. T. Matsuo, K. Suzuki, T. Fukawa, B. Li, M. Ito, Y. Shoji, T. Otani, L. Li, M. Kobayashi, M. Hachiya, Y. Tahara, D. Hashizume, T. Fukunaga, A. Fukazawa, Y. Li, H. Tsuji, K. Tamao, Bull. Chem. Soc. Jpn 84, 1178 (2011)

    Article  Google Scholar 

  83. J.M. Zadrozny, D.J. Xiao, M. Atanasov, G.J. Long, F. Grandjean, F. Neese, J.R. Long, Nat. Chem. 5, 577 (2013)

    Article  Google Scholar 

  84. R.J. Glauber, J. Math. Phys. 4, 294 (1963)

    Article  ADS  MathSciNet  Google Scholar 

  85. L. Bogani, A. Vindigni, R. Sessoli, D. Gatteschi, J. Mater. Chem. 18, 4750 (2008)

    Article  Google Scholar 

  86. W.-X. Zhang, R. Ishikawa, B. Breedlove, M. Yamashita, RSC Adv. 3, 3772 (2013)

    Article  ADS  Google Scholar 

  87. A. Caneschi, D. Gatteschi, N. Lalioti, C. Sangregorio, R. Sessoli, G. Venturi, A. Vindigni, A. Rettori, M.G. Pini, M.A. Novak, Angew. Chem., Int. Ed. 40, 1760 (2001)

    Google Scholar 

  88. R. Clérac, H. Miyasaka, M. Yamashita, C. Coulon, J. Am. Chem. Soc. 124, 12837 (2002)

    Article  Google Scholar 

  89. C. Coulon, R. Clérac, L. Lecren, W. Wernsdorfer, H. Miyasaka, Phys. Rev. B 69, 132408 (2004)

    Article  ADS  Google Scholar 

  90. T. Kajiwara, M. Nakano, Y. Kaneko, S. Takaishi, T. Ito, M. Yamashita, A. Igashira-Kamiyama, H. Nojiri, Y. Ono, N. Kojima, J. Am. Chem. Soc. 127, 10150 (2005)

    Article  Google Scholar 

  91. T. Kajiwara, I. Watanabe, Y. Kaneko, S. Takaishi, M. Enomoto, N. Kojima, M. Yamashita, J. Am. Chem. Soc. 129, 12360 (2007)

    Article  Google Scholar 

Download references

Acknowledgements

In this chapter, our contributed original research has been created in collaboration with Profs. M. Enomoto (Tokyo University of Science), M. Itoi (Nihon University), M. Okubo (The University of Tokyo), K. Kagesawa (Tohoku University), T. Matsuo (Kinki University), Y. Kobayashi (University of Electro-Communications), T. Kajiwara (Nara Women’s University), K. Tamao (Toyota Riken), M. Yamashita (Tohoku University), M. Seto (Kyoto University), H. Sawa (Nagoya University), E. Nishibori (Tsukuba University), Drs. N. Kida (Mitsubishi Chemical Co.), Y. Ono (Mitsubishi Chemical Co.), I. Watanabe (RIKEN). We wish to thank all the collaborators. This work has partly been supported by Toyota Physical and Chemical Research Institute, and a Grant-in-Aid for Science Research from the Ministry of Education, Science, Sports and culture.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Norimichi Kojima .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kojima, N., Okazawa, A. (2021). Molecular Magnetism of Metal Complexes and Light-Induced Phase Transitions. In: Yoshida, Y., Langouche, G. (eds) Modern Mössbauer Spectroscopy. Topics in Applied Physics, vol 137. Springer, Singapore. https://doi.org/10.1007/978-981-15-9422-9_6

Download citation

Publish with us

Policies and ethics