Skip to main content

An Introduction to Emergence Dynamics in Complex Systems

  • Chapter
  • First Online:
Frontiers and Progress of Current Soft Matter Research

Part of the book series: Soft and Biological Matter ((SOBIMA))

Abstract

Emergence is one of the most essential features of complex systems. This property implies new collective behaviors due to the interaction and self-organization among elements in the system, which cannot be produced by a single unit. It is our task in this Chapter to extensively discuss the basic principle, the paradigm, and the methods of emergence in complex systems based on nonlinear dynamics and statistical physics. We develop the foundation and treatment of emergent processes of complex systems, and then exhibit the emergence dynamics by studying two typical phenomena. The first example is the emergence of collective sustained oscillation in networks of excitable elements and gene regulatory networks. We show the significance of network topology in leading to the collective oscillation. By using the dominant phase-advanced driving method and the function-weight approach, fundamental topologies responsible for generating sustained oscillations such as Winfree loops and motifs are revealed, and the oscillation core and the propagating paths are identified. In this case, the topology reduction is the key procedure in accomplishing the dimension-reduction description of a complex system. In the presence of multiple periodic motions, different rhythmic dynamics will compete and cooperate and eventually make coherent or synchronous motion. Microdynamics indicates a dimension reduction at the onset of synchronization. We will introduce statistical methods to explore the synchronization of complex systems as a non-equilibrium transition. We will give a detailed discussion of the Kuramoto self-consistency approach and the Ott-Antonsen ansatz. The synchronization dynamics of a star-networked coupled oscillators and give the analytical description of the transitions among various ordered macrostates. Finally, we summarize the paradigms of studies of the emergence and complex systems.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 74.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.00
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 129.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Needham, J.: Science and Civilisation in China, vol. 4. Science Press, Shanghai, Physics and related technologies (2010)

    Google Scholar 

  2. Laplace, P. S.: A philosophical essay on probabilities. Truscott, F. W., Emory, F. L., trans. New York: Wiley, (1902)

    Google Scholar 

  3. Anderson, P.W.: More is different: Broken symmetry and the nature of the hierarchical structure of science. Science 177(4047), 393–396 (1972)

    Article  ADS  Google Scholar 

  4. Palsson, B.O.: Systems Biology: Properties of Reconstructed Networks. Cambridge University Press, Cambridge (2006)

    Book  Google Scholar 

  5. Meyers, R.A. (ed.): Encyclopedia of Complexity and Systems Science. Springer-Verlag, Berlin (2009)

    MATH  Google Scholar 

  6. Zheng, Z. G.: Emergence Dynamics in Complex Systems: From Synchronization to Collective Transport, vols. I and II, Science Press, Beijing (2019).

    Google Scholar 

  7. Prigogine, I., Nicolis, G.: Self-organization in Non-equilibrium Systems, from Dissipative Structures to Order Through Fluctuations. Wiley, New Jersey (1977)

    MATH  Google Scholar 

  8. Kauffman, S.A.: The Origins of Order: Self-Organization and Selection in Evolution. Oxford University Press, USA (1993)

    Google Scholar 

  9. Ott, E.: Chaos in Dynamical Systems. Cambridge University Press, Cambridge (1993)

    MATH  Google Scholar 

  10. Eckmann, J.P., Ruelle, D.: Ergodic theory of chaos and strange attractors. Rev. Mod. Phys. 57, 617 (1985)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  11. Strogatz, S.H.: Nonlinear Dynamics and Chaos: With Applications to Physics. Chemistry, and Engineering, Westview Press;CRC Press, Biology (2018)

    Book  Google Scholar 

  12. Fuchs, A.: Nonlinear Dynamics in Complex Systems: Theory and Applications for the Life-. Springer, Neuro- and Natural Sciences (2012)

    Google Scholar 

  13. Turing, A.M.: The chemical basis of morphogenesis. Philos. Trans. R. Soc. B 237, 37–72 (1952)

    ADS  MathSciNet  MATH  Google Scholar 

  14. Cross, M., Hohenberg, P.: Pattern formation outside of equilibrium. Rev. Mod. Phys. 65, 851 (1993)

    Article  ADS  MATH  Google Scholar 

  15. Cross, M., Greenside, H.: Pattern Formation and Dynamics in Nonequilibrium Systems. Cambridge University Press, Cambridge (2009)

    Book  MATH  Google Scholar 

  16. Gromov, M., Capasso, V., Gromov, M., Harel-Bellan, A., Morozova, N., Pritchard, L.L. (eds.): Pattern Formation in Morphogenesis: Problems and Mathematical Issues. Springer-Verlag, Berlin Heidelberg (2013)

    MATH  Google Scholar 

  17. Huang, K.: Statistical Mechanics, 2nd edn. Wiley, New York (1987)

    MATH  Google Scholar 

  18. Stanley, H.E. (ed.): Introduction to Phase Transitions and Critical Phenomena. Oxford University Press, Oxford (1987)

    Google Scholar 

  19. Ma, S.K.: Modern theory of critical phenomena. Benjamin, New York (1976)

    Google Scholar 

  20. Haken, H.: Synergetics: An Introduction Nonequilibrium Phase Transitions and Self-Organization in Physics. Springer-Verlag, Berlin Heidelberg, Chemistry and Biology (1978)

    Book  MATH  Google Scholar 

  21. Haken, H.: Advanced Synergetics: Instability Hierarchies of Self-Organizing Systems and Devices. Springer-Verlag, Berlin Heidelberg (1983)

    Book  MATH  Google Scholar 

  22. Watts, D.J., Strogatz, S.H.: Collective dynamics of small-world networks. Nature 393(6684), 440–442 (1998)

    Article  ADS  MATH  Google Scholar 

  23. Barabási, A.L., Albert, R.: Emergence of scaling in random networks. Science 286, 509–512 (1999)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  24. Albert, R., Barabási, A.L.: Statistical mechanics of complex networks. Rev. Mod. Phys. 74(1), 47 (2002)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  25. Eli Ben-Naim, H., Frauenfelder, Z., Torozckai Eds., Complex Networks, Lecture Notes in Physics, vol. 650, Springer, Amazon, (2004)

    Google Scholar 

  26. Dorogovtsev, S.N., Mendes, J.F.F.: Evolution of Networks: From Biological Nets to the Internet and WWW. Oxford University Press, Oxford (2003)

    Book  MATH  Google Scholar 

  27. Pastor-Satorras, R., Vespignani, A.: Evolution and Stricture of the Internet: A Statistical Physics Approach. Cambridge University Press, Cambridge (2004)

    Book  MATH  Google Scholar 

  28. Boccaletti, S., Latora, V., Moreno, Y., Chavez, M., Hwang, D.U.: Complex networks: Structure and dynamics. Phys. Rep. 424, 175–308 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  29. Fang, J.Q., Wang, X.F., Zheng, Z.G., Bi, Q., Di, Z.R., Li, X.: New interdisciplinary science: network science (I). Progress Phys 27(3), 239–343 (2007)

    Google Scholar 

  30. Fang, J.Q., Wang, X.F., Zheng, Z.G., Li, X., Di, Z.R., Bi, Q.: New interdisciplinary science: network science (II). Progress Phys 27(4), 361–448 (2007)

    Google Scholar 

  31. Glass, L., Mackay, M.C.: From Clocks to Chaos: The rhythms of Life. Princeton University Press, Princeton, NJ (1988)

    Book  MATH  Google Scholar 

  32. Zheng, Z.G.: Deciphering biological clocks, and reconstructing life rhythms. Physics 46(12), 802–808 (2017)

    Google Scholar 

  33. The official website of the Nobel Prize: https://www.nobelprize.org/nobel_prizes/medicine/laureates/2017/press.html

  34. Mauro, Z., Rodolfo, C., Giuseppe, M., Chiaki, F., Gianluca, T.: Circadian Clocks: What Makes Them Tick? Chronobiol. Int. 17(4), 433–451 (2000)

    Article  Google Scholar 

  35. De Mairan.: Observation botanique, Histoire de l'Académie royale dessciences avec les mémoires de mathématique et de physique tirés des registres decette Académie, 35 (1729).

    Google Scholar 

  36. Konopka, R.J., Benzer, S.: Clock mutants of Drosophila melanogaster. Proc. Natl. Acad. Sci. USA 68, 2112–2116 (1971)

    Article  ADS  Google Scholar 

  37. Reddy, P., Zehring, W.A., Wheeler, D.A., Pirrotta, V., Hadfield, C., Hall, J.C., Rosbash, M.: Molecular analysis of the period locus in Drosophila melanogaster and identification of a transcript involved in biological rhythms. Cell 38, 701–710 (1984)

    Article  Google Scholar 

  38. Bargiello, T.A., Young, M.W.: Molecular genetics of a biological clock in Drosophila. Proc. Natl. Acad. Sci. USA 81, 2142–2146 (1984)

    Article  ADS  Google Scholar 

  39. Bargiello, T.A., Jackson, F.R., Young, M.W.: Restoration of circadian behavioural rhythms by gene transfer in Drosophila. Nature 312, 752–754 (1984)

    Article  ADS  Google Scholar 

  40. Hardin, P.E., Hall, J.C., Rosbash, M.: Feedback of the Drosophila period gene product on circadian cycling of its messenger RNA levels. Nature 343, 536–540 (1990)

    Article  ADS  Google Scholar 

  41. Vitaterna, M.H., King, D.P., Chang, A.M., Kornhauser, J.M., Lowrey, P.L., McDonald, J.D., Dove, W.F., Pinto, L.H., Turek, F.W., Takahashi, J.S.: Mutagenesis and mapping of a mouse gene, Clock, essential for circadian behavior. Science 264(5159), 719–725 (1994)

    Article  ADS  Google Scholar 

  42. Price, J.L., Blau, J., Rothenfluh, A., Abodeely, M., Kloss, B., Young, M.W.: double-time is a novel Drosophila clock gene that regulates PERIOD protein accumulation. Cell 94, 83–95 (1998)

    Article  Google Scholar 

  43. Nekorkin, V. I.: Introduction to Nonlinear Oscillations, Wiley-VCH, (2015)

    Google Scholar 

  44. Guckenheimer, J., Holmes, P.: Nonlinear Oscillations, Dynamical Systems, and Bifurcation of Vector Fields. Springer-Verlag, New York (1983)

    Book  MATH  Google Scholar 

  45. Glass, L.: Synchronization and Rhythmic Processes in Physiology. Nature 410, 277–284 (2001)

    Article  ADS  Google Scholar 

  46. Elowitz, M.B., Leibler, S.: A synthetic oscillatory network of transcriptional regulators. Nature 403, 335–338 (2000)

    Article  ADS  Google Scholar 

  47. Buzsaki, G., Draguhn, A.: Neuronal oscillations in cortical networks. Science 304, 1926–1929 (2004)

    Article  ADS  Google Scholar 

  48. Zheng, Z. G.: Collective Behaviors and Spatiotemporal Dynamics in Coupled Nonlinear Systems. Beijing, Higher Education Press (in Chinese) (2004)

    Google Scholar 

  49. Goldbeter, A.: Computational approaches to cellular rhythms. Nature 420, 238–245 (2002)

    Article  ADS  Google Scholar 

  50. Ferrell, J.E., Tsai, T.Y., Yang, Q.: Modeling the cell cycle: Why do certain circuits oscillate? Cell 144, 874–885 (2011)

    Article  Google Scholar 

  51. Gardner, T.S., Cantor, C.R., Collins, J.J.: Construction of a genetic toggle switch in Escherichia coli. Nature 403(6767), 339–342 (2000)

    Article  ADS  Google Scholar 

  52. Ozbudak, E., Thattai, M., Lim, H., et al.: Multistability in the lactose utilization network of Escherichia coli. Nature 427, 737–740 (2004)

    Article  ADS  Google Scholar 

  53. Tsai, T.Y., Choi, Y.S., Ma, W.Z., Pomerening, J.R., Tang, C., Ferrell, J.E.: Ferrell, robust, tunable biological oscillations from interlinked positive and negative feedback loops. Science 321(5885), 126–129 (2008)

    Article  ADS  Google Scholar 

  54. Huang, X.H., Zheng, Z.G., Hu, G., Wu, S., Rasch, M.J.: Different propagation speeds of recalled sequences in plastic spiking neural networks. New J. Phys. 17, 035006 (2015)

    Article  ADS  Google Scholar 

  55. Chen, L., Aihara, K.: Chaotic simulated annealing by a neural-network model with transient chaos. Neur. Net. 8, 915–930 (1995)

    Article  Google Scholar 

  56. Herz, A.V.M., Gollisch, T., Machens, C.K., Jaeger, D.: Modeling single-neuron dynamics and computations: A balance of detail and abstraction. Science 314, 80–85 (2006)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  57. Mandelblat-Cerf, Y., Novick, I., Vaadia, E.: Expressions of multiple neuronal dynamics during sensorimotor learning in the motor cortex of behaving monkeys, PLoS ONE 6(7), e21626 (2011)

    Google Scholar 

  58. Li, N., Daie, K., Svoboda, K., Druckmann, S.: Robust neuronal dynamics in premotor cortex during motor planning. Nature 532, 459–464 (2016)

    Article  ADS  Google Scholar 

  59. Burke, J.F., Zaghloul, K.A., et al.: Synchronous and asynchronous theta and gamma activity during episodic memory formation. J. Neur. 33, 292–304 (2013)

    Article  Google Scholar 

  60. Qian, Y., Huang, X.D., Hu, G., Liao, X.H.: Structure and control of self-sustained target waves in excitable small-world networks. Phys. Rev. E 81, 036101 (2010)

    Article  ADS  Google Scholar 

  61. Qian, Y., Liao, X.H., Huang, X.D., Mi, Y.Y., Zhang, L.S., Hu, G.: Diverse self-sustained oscillatory patterns and their mechanisms in excitable small-world networks. Phys. Rev. E 82, 026107 (2010)

    Article  ADS  Google Scholar 

  62. Liao, X.H., Xia, Q.Z., Qian, Y., Zhang, L.S., Hu, G., Mi, Y.Y.: Pattern formation in oscillatory complex networks consisting of excitable nodes. Phys. Rev. E 83, 056204 (2010)

    Article  ADS  Google Scholar 

  63. Liao, X.H., Qian, Y., Mi, Y.Y., Xia, Q.Z., Huang, X.Q., Hu, G.: Oscillation sources and wave propagation paths in complex networks consisting of excitable nodes. Front. Phys. 6, 124 (2011)

    Article  ADS  Google Scholar 

  64. Mi, Y.Y., Zhang, L.S., Huang, X.D., Qian, Y., Hu, G., Liao, X.H.: Complex networks with large numbers of labelable attractors. Europhys. Lett. 95, 58001 (2011)

    Article  ADS  Google Scholar 

  65. Mi, Y.Y., Liao, X.H., Huang, X.H., Zhang, L.S., Gu, W.F., Hu, G., Wu, S.: Long-period rhythmic synchronous firing in a scale-free network. PNAS 25, E4931–E4936 (2013)

    MathSciNet  MATH  Google Scholar 

  66. Zhang, Z.Y., Ye, W.M., Qian, Y., Zheng, Z.G., Huang, X.H., Hu, G.: Chaotic motifs in gene regulatory networks. PLoS ONE 7, e39355 (2012)

    Article  ADS  Google Scholar 

  67. Zhang, Z.Y., Li, Z.Y., Hu, G., Zheng, Z.G.: Exploring cores and skeletons in oscillatory gene regulatory networks by a functional weight approach. Europhys. Lett. 105, 18003 (2014)

    Article  ADS  Google Scholar 

  68. Zhang, Z.Y., Huang, X.H., Zheng, Z.G., Hu, G.: Exploring cores and skeletons in oscillatory gene regulatory networks by a functional weight approach. Sci. Sin. 44 1319 (in Chinese) (2014)

    Google Scholar 

  69. Jahnke, W., Winfree, A.T.: A survey of spiral wave behavior in the oregonator model. Int. J. Bif. Chaos 1, 445–466 (1991)

    Article  MathSciNet  MATH  Google Scholar 

  70. Courtemanche, M., Glass, L., Keener, J.P.: Instabilities of a propagating pulse in a ring of excitable media. Phys. Rev. Lett. 70, 2182–2185 (1993)

    Article  ADS  Google Scholar 

  71. Qian, Y., Cui, X.H., Zheng, Z.G.: Minimum Winfree loop determines self-sustained oscillations in excitable Erdos-Renyi random networks. Sci. Rep. 7, 5746 (2017)

    Article  ADS  Google Scholar 

  72. Zheng, Z.G., Qian, Y.: Self-sustained oscillations in biological excitable media. Chin. Phys. B 27(1), 018901 (2018)

    Article  ADS  MathSciNet  Google Scholar 

  73. Qian, Y., Zhang, G., Wang, Y.F., Yao, C.G., Zheng, Z.G.: Winfree loop sustained oscillation in two-dimensional excitable lattices: Prediction and Realization. Chaos 29, 073106 (2019)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  74. Qian, Y., Wang, Y., Zhang, G., Liu, F., Zheng, Z.G.: Collective sustained oscillations in excitable small-world networks: the moderate fundamental loop or the minimum Winfree loop? Nonlinear Dyn. 99(2), 1415 (2020)

    Article  Google Scholar 

  75. Zhang, Z.Y., Zheng, Z.G., Niu, H.J., Mi, Y.Y., Wu, S., Hu, G.: Solving the inverse problem of noise-driven dynamic networks. Phys. Rev. E 91, 012814 (2015)

    Article  ADS  MathSciNet  Google Scholar 

  76. Chen, Y., Wang, S.H., Zheng, Z.G., Zhang, Z.Y., Hu, G.: Depicting network structures from variable data produced by unknown colored-noise driven dynamics. Europhys. Lett. 113, 18005 (2016)

    Article  ADS  Google Scholar 

  77. Pikovsky, A., Rosenblum, M., Kurths, J.: Synchronization, A Universal Concept in Nonlinear Sciences. Cambridge University Press, New York (2001)

    Book  MATH  Google Scholar 

  78. Strogatz, S.: Sync: The emerging science of spontaneous order, Hyperion, (2003)

    Google Scholar 

  79. Smith, H.M.: Synchronous flashing of fireflies. Science 82, 151 (1935)

    Article  ADS  Google Scholar 

  80. Buck, J.B.: Synchronous rhythmic flashing of fireflies. Quart. Rev. Biol. 13(3), 301–314 (1938); Synchronous rhythmic flashing of fireflies. II. Quart. Rev. Biol. 63(3), 265–289 (1988)

    Google Scholar 

  81. Huygenii, G.: Horoloquim Oscilatorium Parisiis, France, (1673)

    Google Scholar 

  82. Winfree, A.T.: Biological rhythms and the behavior of populations of coupled oscillators. J. Theo. Biol. 16, 15–42 (1967)

    Article  Google Scholar 

  83. Kuramoto, Y.: Self-entrainment of a population of coupled non-linear oscillators. In: International Symposium on Mathematical Problems in Theoretical Physics, Springer, Berlin/Heidelberg, (1975), NBR 6023

    Google Scholar 

  84. Winfree, A.T.: Geometry of Biological Time. Springer-Verlag, New York (1990)

    MATH  Google Scholar 

  85. Kuramoto, Y.: Chemical Oscillations, Waves and Turbulence. Springer-Verlag, Berlin (1984)

    Book  MATH  Google Scholar 

  86. Acebrón, J.A., Bonilla, L.L., Vicente, C.J.P., Ritort, F., Spigler, R.: The Kuramoto model: A simple paradigm for synchronization phenomena. Rev. Mod. Phys. 77(1), 137 (2005)

    Article  ADS  Google Scholar 

  87. Arenas, A., Díaz-Guilera, A., Kurths, J., Moreno, Y., Zhou, C.: Synchronization in complex networks. Phys. Rep. 469(3), 93–153 (2008)

    Article  ADS  MathSciNet  Google Scholar 

  88. Rodrigues, F.A., Peron, T.K.DM., Ji, P., Kurths, J.: The Kuramoto model in complex networks, Phys. Rep. 610, 1–98 (2016)

    Google Scholar 

  89. Osipov, G.V., Kurths, J., Zhou, C.S.: Synchronization in Oscillatory Networks, Springer Series in Synergetics, Springer-Verlag, Berlin, (2007)

    Google Scholar 

  90. Yao, N., Zheng, Z.G.: Chimera states in spatiotemporal systems: Theory and applications. Int. J. Mod. Phys. B 30(7), 1630002 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  91. Ott, E., Antonsen, T.M.: Low dimensional behavior of large systems of globally coupled oscillators. Chaos 18(3), 037113 (2008)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  92. Ott, E., Antonsen, T.M.: Long time evolution of phase oscillator systems. Chaos 19(2), 023117 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  93. Marvel, S.A., Strogatz, S.H.: Invariant submanifold for series arrays of Josephson junctions. Chaos 19(1), 013132 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  94. Marvel, S.A., Mirollo, R.E., Strogatz, S.H.: Identical phase oscillators with global sinusoidal coupling evolve by mobius group action. Chaos 19(4), 043104 (2009)

    Article  ADS  MathSciNet  MATH  Google Scholar 

  95. Hu, G., Xiao, J.H., Zheng, Z.G.: Chaos Control. Shanghai Sci. Tech. Edu. Pub. House, Shanghai (2000)

    Google Scholar 

  96. Zheng, Z.G.: Collective Behaviors and Spatiotemporal Dynamics in Coupled Nonlinear Systems. Higher Education Press, Beijing (2004)

    Google Scholar 

  97. Zheng, Z.G., Hu, G., Hu, B.: Phase slips and phase synchronization of coupled oscillators. Phys. Rev. Lett. 81, 5318–5321 (1998)

    Article  ADS  Google Scholar 

  98. Zheng, Z.G., Hu, B., Hu, G.: Collective phase slips and phase synchronizations in coupled oscillator systems. Phys. Rev. E 62, 402–408 (2000)

    Article  ADS  Google Scholar 

  99. Hu, B., Zheng, Z.G.: Phase synchronizations: transitions from high- to low-dimensional tori through chaos. Inter. J. Bif. Chaos 10(10), 2399–2414 (2000)

    Article  MathSciNet  MATH  Google Scholar 

  100. Zheng, Z.G.: Synchronization of coupled phase oscillators, Chap. 9. In: Advances in Electrical Engineering Research. vol. 1, pp: 293–327. (Ed.: Brouwer, T.M.) Nova Sci., (2011)

    Google Scholar 

  101. Gao, J., Xu, C., Sun, Y., Zheng, Z.G.: Order parameter analysis for low-dimensional behaviors of coupled phase-oscillators. Sci. Rep. 6, 30184 (2016)

    Article  ADS  Google Scholar 

  102. Zheng, Z.G., Zhai, Y.: Chimera state: From complex networks to spatiotemporal patterns (in Chinese). Sci. Sin-Phys. Mech. Astron 50, 010505 (2020)

    Article  Google Scholar 

  103. Xu, C., Xiang, H., Gao, J., Zheng, Z.G.: Collective dynamics of identical phase oscillators with high-order coupling. Sci. Rep. 6, 31133 (2016)

    Article  ADS  Google Scholar 

  104. Xu, C., Boccaletti, S., Guan, S.G., Zheng, Z.G.: Origin of bellerophon states in globally coupled phase oscillators. Phys. Rev. E 98, 050202(R) (2018)

    Article  ADS  Google Scholar 

  105. Xu, C., Gao, J., Xiang, H., Jia, W., Guan, S., Zheng, Z.G.: Dynamics of phase oscillators in the Kuramoto model with generalized frequency-weighted coupling. Phys. Rev. E 94, 062204 (2016)

    Article  ADS  Google Scholar 

  106. Xu, C., Sun, Y.T., Gao, J., Qiu, T., Zheng, Z.G., Guan, S.G.: Synchronization of phase oscillators with frequency-weighted coupling. Sci. Rep. 6, 21926

    Google Scholar 

  107. Xu, C., Boccaletti, S., Zheng, Z.G., Guan, S.G.: Universal phase transitions to synchronization in Kuramoto-like models with heterogeneous coupling. New J. Phys. 21, 113018 (2019)

    Article  ADS  MathSciNet  Google Scholar 

  108. Xu, C., Zheng, Z.G.: Bifurcation of the collective oscillatory state in phase oscillators with heterogeneity coupling. Nonlinear Dyn. 98(3), 2365–2373 (2019)

    Article  MATH  Google Scholar 

  109. Xu, C., Gao, J., Sun, Y.T., Huang, X., Zheng, Z.G.: Explosive or Continuous: Incoherent state determines the route to synchronization. Sci. Rep. 5, 12039 (2015)

    Article  ADS  Google Scholar 

  110. Chen, H.B., Sun, Y.T., Gao, J., Xu, C., Zheng, Z.G.: Order parameter analysis of synchronization on star networks. Front. Phys. 12(6), 120504 (2017)

    Article  ADS  Google Scholar 

  111. Xu, C., Sun, Y.T., Gao, J., Jia, W.J., Zheng, Z.G.: Phase transition in coupled star network. Nonlinear Dyn. 94, 1267–1275 (2018)

    Article  Google Scholar 

  112. Xu, C., Gao, J., Boccaletti, S., Zheng, Z.G., Guan, S.G.: Synchronization in starlike networks of phase oscillators. Phys. Rev. E 100, 012212 (2019)

    Article  ADS  Google Scholar 

  113. Gómez-Gardeñes, J., Gómez, S., Arenas, A., Moreno, Y.: Explosive synchronization transitions in scale-free networks. Phys. Rev. Lett. 106, 128701 (2011)

    Article  ADS  Google Scholar 

  114. Ji, P., Peron, T.K.D., Menck, P.J., Rodrigues, F.A., Kurths, J.: Cluster explosive synchronization in complex networks. Phys. Rev. Lett. 110, 218701 (2013)

    Article  ADS  Google Scholar 

  115. Leyva, I., et al.: Explosive first-order transition to synchrony in networked chaotic oscillators. Phys. Rev. Lett. 108, 168702 (2012)

    Article  ADS  Google Scholar 

  116. Zou, Y., Pereira, T., Small, M., Liu, Z., Kurths, J.: Basin of attraction determines hysteresis in explosive synchronization. Phys. Rev. Lett. 112, 114102 (2014)

    Article  ADS  Google Scholar 

  117. Rodrigues, F.A., Peron, T.K.D., Ji, P., et al.: The Kuramoto model in complex networks. Phys. Rep. 610, 1–98 (2016)

    Article  ADS  MathSciNet  MATH  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Zhigang Zheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Zheng, Z. (2021). An Introduction to Emergence Dynamics in Complex Systems. In: Liu, XY. (eds) Frontiers and Progress of Current Soft Matter Research. Soft and Biological Matter. Springer, Singapore. https://doi.org/10.1007/978-981-15-9297-3_4

Download citation

Publish with us

Policies and ethics