Skip to main content

Multi-Level Parallelization of the Fragment Molecular Orbital Method in GAMESS

  • Chapter
  • First Online:
Recent Advances of the Fragment Molecular Orbital Method

Abstract

The parallelization of the fragment molecular orbital (FMO) method implemented in GAMESS is reviewed for Cray/Intel, IBM Blue Gene, and Fujitsu supercomputers. Various strategies for load balancing are compared. A basic OpenMP implementation of FMO is described and its parallel efficiency is reported. The two-level generalized distributed data interface is extended to an arbitrary number of levels and applied using three levels to an FMO Hessian calculation at the level of second-order Møller–Plesset (MP2) theory.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Akimov AV, Prezhdo OV (2015) Large-scale computations in chemistry: a bird’s eye view of a vibrant field. Chem Rev 115:5797–5890

    Article  CAS  Google Scholar 

  2. Gordon MS, Fedorov DG, Pruitt SR, Slipchenko LV (2012) Fragmentation methods: a route to accurate calculations on large systems. Chem Rev 112:632–672

    Article  CAS  Google Scholar 

  3. Kitaura K, Sawai T, Asada T, Nakano T, Uebayasi M (1999) Pair interaction molecular orbital method: an approximate computational method for molecular interactions. Chem Phys Lett 312:319–324

    Article  CAS  Google Scholar 

  4. Fedorov DG, Kitaura K (2007) Extending the power of quantum chemistry to large systems with the fragment molecular orbital method. J Phys Chem A 111:6904–6914

    Article  CAS  Google Scholar 

  5. Nagata T, Fedorov DG, Kitaura K (2011) Mathematical formulation of the fragment molecular orbital method. In: Linear-scaling techniques in computational chemistry and physics. Springer Netherlands, Dordrecht, pp 17–64

    Google Scholar 

  6. Fedorov D, Kitaura K (eds) (2009) The fragment molecular orbital method: practical applications to large molecular systems. CRC Press, Boca Raton, FL

    Google Scholar 

  7. Fedorov DG, Nagata T, Kitaura K (2012) Exploring chemistry with the fragment molecular orbital method. Phys Chem Chem Phys 14:7562

    Article  CAS  Google Scholar 

  8. Tanaka S, Mochizuki Y, Komeiji Y, Okiyama Y, Fukuzawa K (2014) Electron-correlated fragment-molecular-orbital calculations for biomolecular and nano systems. Phys Chem Chem Phys 16:10310–10344

    Article  CAS  Google Scholar 

  9. Fedorov DG (2017) The fragment molecular orbital method: theoretical development, implementation in GAMESS, and applications. Wiley Interdiscip Rev Comput Mol Sci 7:e1322

    Article  Google Scholar 

  10. Mazanetz MP, Chudyk E, Fedorov DG, Alexeev Y (2016) Applications of the fragment molecular orbital method to drug research. In: Zhang W (ed) Computer-aided drug discovery. Springer, New York, NY, pp 217–255

    Google Scholar 

  11. Fedorov DG, Kitaura K (2004) The importance of three-body terms in the fragment molecular orbital method. J Chem Phys 120:6832–6840

    Article  CAS  Google Scholar 

  12. Alexeev Y, Mazanetz MP, Ichihara O, Fedorov DG, Fedorov DG (2012) GAMESS as a free quantum-mechanical platform for drug research. Curr Top Med Chem 12:2013–2033

    Google Scholar 

  13. Schmidt MW, Baldridge KK, Boatz JA, Elbert ST, Gordon MS, Jensen JH, Koseki S, Matsunaga N, Nguyen KA, Su S, Windus TL, Dupuis M, Montgomery JA (1993) General atomic and molecular electronic structure system. J Comput Chem 14:1347–1363

    Article  CAS  Google Scholar 

  14. Gordon MS, Schmidt MW (2005) Advances in electronic structure theory: GAMESS a decade later. In: Dykstra C, Frenking G, Kim K, Scuseria G (eds) Theory and applications of computational chemistry. Elsevier, Amsterdam, pp 1167–1189

    Chapter  Google Scholar 

  15. Inadomi Y, Nakano T, Kitaura K, Nagashima U (2001) Increased efficiency of parallel calculations of fragment molecular orbitals by using fine-grained parallelization on a HITACHI SR8000 supercomputer. In: Hertzberger B, Hoekstra A, Williams R (eds) High-performance computing and networking. HPCN-Europe 2001. Lecture notes in computer science. Springer, Berlin, Heidelberg, pp 569–572

    Google Scholar 

  16. Komeiji Y, Inadomi Y, Nakano T (2004) PEACH 4 with ABINIT-MP: a general platform for classical and quantum simulations of biological molecules. Comput Biol Chem 28:155–161

    Article  CAS  Google Scholar 

  17. Ishikawa T, Ishikura T, Kuwata K (2009) Theoretical study of the prion protein based on the fragment molecular orbital method. J Comput Chem 30:2594–2601

    Article  CAS  Google Scholar 

  18. Takami T, Maki J, Ooba J, Inadomi Y, Honda H, Susukita R, Inoue K, Kobayashi T, Nogita R, Aoyagi M, Simos TE, Maroulis G (2007) Multi-physics extension of OpenFMO framework. In: AIP conference proceedings. AIP, pp 122–125

    Google Scholar 

  19. Doi H, Okuwaki K, Mochizuki Y, Ozawa T, Yasuoka K (2017) Dissipative particle dynamics (DPD) simulations with fragment molecular orbital (FMO) based effective parameters for 1-palmitoyl-2-oleoyl phosphatidyl choline (POPC) membrane. Chem Phys Lett 684:427–432

    Google Scholar 

  20. Fletcher GD, Schmidt MW, Bode BM, Gordon MS (2000) The distributed data interface in GAMESS. Comput Phys Commun 128:190–200

    Google Scholar 

  21. Shah G, Nieplocha J, Mirza J, Kim C, Harrison R, Govindaraju RK, Gildea K, DiNicola P, Bender C (1998) Performance and experience with LAPI-a new high-performance communication library for the IBM RS/6000 SP. In: Proceedings of the first merged international parallel processing symposium and symposium on parallel and distributed processing. IEEE Comput Soc, pp 260–266

    Google Scholar 

  22. Nieplocha J, Tipparaju V, Krishnan M, Panda DK (2006) High performance remote memory access communication: the ARMCI approach. Int J High Perform Comput Appl 20:233–253

    Google Scholar 

  23. Asadchev A, Gordon MS (2013) Fast and Flexible Coupled Cluster Implementation. J. Chem. Theory Comput. 9:3385–3392

    Article  CAS  Google Scholar 

  24. Ishimura K, Kuramoto K, Ikuta Y, Hyodo S (2010) MPI/OpenMP hybrid parallel algorithm for Hartree−Fock calculations. J Chem Theory Comput 6:1075–1080

    Article  CAS  Google Scholar 

  25. K-Computer. https://www.r-ccs.riken.jp/en/k-computer/system

  26. Mironov VA, Khrenova M, Moskovsky AA (2015) On quantum chemistry code adaptation for RSC petastream architecture. In: Kunkel J, Ludwig T (eds) High performance computing. Springer, Cham, Frankfurt, pp 113–121

    Chapter  Google Scholar 

  27. Mironov VA, Moskovsky AA, D’Mello M, Alexeev Y (2017) An efficient MPI/OpenMP parallelization of the Hartree–Fock–Roothaan method for the first generation of Intel® Xeon PhiTM processor architecture. Int J High Perform Comput, Appl

    Google Scholar 

  28. Mironov VA, Alexeev Y, Keipert K, D’mello M, Moskovsky AA, Gordon MS (2017) An efficient MPI/OpenMP parallelization of the Hartree-Fock method for the second generation of Intel® Xeon PhiTM processor. In: Proceedings of the international conference for high performance computing, networking, storage and analysis on SC’17. ACM Press, New York, New York, USA, pp 1–12

    Google Scholar 

  29. Fedorov DG, Olson RM, Kitaura K, Gordon MS, Koseki S (2004) A new hierarchical parallelization scheme: generalized distributed data interface (GDDI), and an application to the fragment molecular orbital method (FMO). J Comput Chem 25:872–880

    Article  CAS  Google Scholar 

  30. Fedorov DG, Sugita Y, Choi CH (2013) Efficient parallel implementations of QM/MM-REMD (quantum mechanical/molecular mechanics-replica-exchange MD) and umbrella sampling: isomerization of H2O2 in aqueous solution. J Phys Chem B 117:7996–8002

    Article  CAS  Google Scholar 

  31. Ito S, Fedorov DG, Okamoto Y, Irle S (2018) Implementation of replica-exchange umbrella sampling in GAMESS. Comput Phys Commun 228:152–162

    Article  CAS  Google Scholar 

  32. Devarajan A, Gaenko A, Gordon MS, Windus TL (2017) Nucleation using the effective fragment potential and two-level parallelism. In: Fragmentation. Wiley, Chichester, UK, pp 209–226

    Google Scholar 

  33. Fedorov DG, Slipchenko LV, Kitaura K (2010) Systematic study of the embedding potential description in the fragment molecular orbital method. J Phys Chem A 114:8742–8753

    Article  CAS  Google Scholar 

  34. Fletcher GD, Schmidt MW, Gordon MS (1999) Developments in parallel electronic structure theory. Adv Chem Phys 110:267–294

    CAS  Google Scholar 

  35. Nishimoto Y, Fedorov DG (2018) Adaptive Frozen orbital treatment for the fragment molecular orbital method combined with density-functional tight-binding. J Chem Phys 148:064115

    Article  Google Scholar 

  36. Ikegami T, Ishida T, Fedorov DG, Kitaura K, Inadomi Y, Umeda H, Yokokawa M, Sekiguchi S (2005) Full electron calculation beyond 20,000 atoms: ground electronic state of photosynthetic proteins. In: ACM/IEEE SC 2005 conference (SC’05). IEEE, Seattle, Washington, USA, p 10

    Google Scholar 

  37. Alexeev Y, Mahajan A, Leyffer S, Fletcher G, Fedorov DG (2012) Heuristic static load-balancing algorithm applied to the fragment molecular orbital method. In: 2012 international conference for high performance computing, networking, storage and analysis. IEEE, Salt Lake City, Utah, USA, pp 1–13

    Google Scholar 

  38. Talamudupula SK, Sosonkina M, Gaenko A, Schmidt MW (2012) Fragment molecular orbital method adaptations for heterogeneous computing platforms. Procedia Comput Sci 9:489–497

    Article  Google Scholar 

  39. Fletcher GD, Fedorov DG, Pruitt SR, Windus TL, Gordon MS (2012) Large-scale MP2 calculations on the blue gene architecture using the fragment molecular orbital method. J Chem Theory Comput 8:75–79

    Article  CAS  Google Scholar 

  40. Pruitt SR, Nakata H, Nagata T, Mayes M, Alexeev Y, Fletcher GD, Fedorov DG, Kitaura K, Gordon MS (2016) Importance of three-body interactions in molecular dynamics simulations of water demonstrated with the fragment molecular orbital method. J Chem Theory Comput 12:1423–1435

    Article  CAS  Google Scholar 

  41. Umeda H, Sato M (2011) Parallelization of GAMESS to the large-scale computing. In: Proceedings of the 30th JSST annual conference (JSST 2011); International conference on modeling and simulation technology, OS2, Tokyo, Japan, p 92

    Google Scholar 

  42. Feyereisen M, Fitzgerald G, Komornicki A (1993) Use of approximate integrals in ab initio theory. An application in MP2 energy calculations. Chem Phys Lett 208:359–363

    Google Scholar 

  43. Pham B, Gordon MS. Hybrid OpenMP/MPI RI-MP2 energy and gradient implementation in GAMESS

    Google Scholar 

  44. Gunina AO, Gordon MS. Hybrid OpenMP/MPI implementation of EFMO method in GAMESS

    Google Scholar 

  45. Katouda M, Nagase S (2009) Efficient parallel algorithm of second-order Møller–Plesset perturbation theory with resolution-of-identity approximation (RI-MP2). Int J Quantum Chem 109:2121–2130

    Article  CAS  Google Scholar 

  46. Furukawa Y, Koga R, Yasuda K (2011) Acceleration of computational quantum chemistry by heterogeneous computer architectures. In: Proceedings of the 30th JSST annual conference (JSST 2011); International conference on modeling and simulation technology, OS2, Tokyo, Japan, p 85

    Google Scholar 

  47. Sawada T, Fedorov DG, Kitaura K (2010) Binding of influenza A virus hemagglutinin to the sialoside receptor is not controlled by the homotropic allosteric effect. J Phys Chem B 114:15700–15705

    Article  CAS  Google Scholar 

  48. Mironov VA, Moskovsky AA, Alexeev Y (2017) Power measurements of Hartree–Fock algorithms using different storage devices. In: 2017 IEEE international parallel and distributed processing symposium workshops (IPDPSW). IEEE, Orlando, US, pp 1004–1011

    Google Scholar 

  49. Nakano T, Kaminuma T, Sato T, Fukuzawa K, Akiyama Y, Uebayasi M, Kitaura K (2002) Fragment molecular orbital method: use of approximate electrostatic potential. Chem Phys Lett 351:475–480

    Article  CAS  Google Scholar 

  50. Fedorov DG, Kitaura K (2017) Modeling and visualization for the fragment molecular orbital method with the graphical user interface FU, and analyses of protein-ligand binding. In: Gordon MS (ed) Fragmentation: toward accurate calculations on complex molecular systems. Wiley, Chichester, UK, pp 119–139

    Chapter  Google Scholar 

Download references

Acknowledgements

We thank Dr. Ryan Olson for contributing code to the multilevel GDDI. VM thanks Intel Parallel Computing Centers program for funding. DGF and HU thank the Next-Generation Supercomputer (NGS) project funded by the Ministry of Education, Culture, Sports, Science and Technology (MEXT) in Japan. This work was supported by the Office of Science, U.S. Department of Energy, under Contract DE-AC02-06CH11357. MSG acknowledges support from the US Department of Energy Exascale Computing Project. This research was in part supported by the Exascale Computing Project (17-SC-20-SC), a collaborative effort of the U.S. Department of Energy Office of Science and the National Nuclear Security Administration.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Yuri Alexeev .

Editor information

Editors and Affiliations

Glossary

GAMESS

general atomic and molecular electronic structure system

QM

quantum-mechanical

FMO

fragment molecular orbital

HPC

high-performance computing

MPI

message passing interface

OpenMP

open multi-processing

HF

Hartree–Fock

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mironov, V.A. et al. (2021). Multi-Level Parallelization of the Fragment Molecular Orbital Method in GAMESS. In: Mochizuki, Y., Tanaka, S., Fukuzawa, K. (eds) Recent Advances of the Fragment Molecular Orbital Method. Springer, Singapore. https://doi.org/10.1007/978-981-15-9235-5_30

Download citation

Publish with us

Policies and ethics