Skip to main content

Biomolecular Pathways in Mesothelioma: What Is New Perspective on Biomolecular Research for Mesothelioma?

  • Chapter
  • First Online:
Malignant Pleural Mesothelioma

Abstract

Exposure to asbestos and to other carcinogenic fibers causes mesothelioma, an aggressive tumor with poor prognosis. Tumorigenesis originates from a chronic inflammatory process driven by high mobility group box 1 (HMGB1) and the activation of the inflammatory factors, which induce the secretion of tumor necrosis factor-α (TNF-α) and other cytokines. Over time, the chronic inflammatory process induces cell survival, favoring the accumulation of DNA mutations that activate several activated pathways, promoting tumor growth. The discovery of germline heterozygous mutations of the BRCA-associated protein 1 (BAP1) gene, conferring higher susceptibility to mesothelioma, originated from studies of gene and environment interactions. Several pathways are relevant in mesothelioma, including NF2 and Hippo, receptor tyrosine kinases like EGFR and MET, intracellular kinases such as PI3K, ERK5, and others. However, HMGB1 and BAP1 represent the most frequent and key activators of oncogenic transformation and tumor progression in mesothelioma. Therefore, the pathways activated by these two proteins, both characterized by dual activity at nuclear and cytoplasmic levels, may offer the most promising perspectives for novel therapeutic approaches to antagonize a very aggressive and refractory cancer like mesothelioma.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 99.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Carbone M, Yang H. Mesothelioma: recent highlights. Annals of translational medicine. 2017;5(11):238. https://doi.org/10.21037/atm.2017.04.29.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Carbone M, Adusumilli PS, Alexander HRJ, Baas P, Bardelli F, Bononi A, et al. Mesothelioma: scientific clues for prevention, diagnosis, and therapy. CA Cancer J Clin. 2019;69(5):402–9. https://doi.org/10.3322/caac.21572.

  3. Carbone M, Amelio I, Affar EB, Brugarolas J, Cannon-Albright LA, Cantley LC, et al. Consensus report of the 8 and 9th Weinman Symposia on gene x environment interaction in carcinogenesis: novel opportunities for precision medicine. Cell Death Differ. 2018;25(11):1885–904. https://doi.org/10.1038/s41418-018-0213-5.

    Article  PubMed  PubMed Central  Google Scholar 

  4. Broaddus VC, Yang L, Scavo LM, Ernst JD, Boylan AM. Asbestos induces apoptosis of human and rabbit pleural mesothelial cells via reactive oxygen species. J Clin Invest. 1996;98(9):2050–9. https://doi.org/10.1172/JCI119010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  5. Yang H, Bocchetta M, Kroczynska B, Elmishad AG, Chen Y, Liu Z, et al. TNF-alpha inhibits asbestos-induced cytotoxicity via a NF-kappaB-dependent pathway, a possible mechanism for asbestos-induced oncogenesis. Proc Natl Acad Sci U S A. 2006;103(27):10397–402.

    Article  CAS  Google Scholar 

  6. Yang H, Rivera Z, Jube S, Nasu M, Bertino P, Goparaju C, et al. Programmed necrosis induced by asbestos in human mesothelial cells causes high-mobility group box 1 protein release and resultant inflammation. Proc Natl Acad Sci U S A. 2010;107(28):12611–6. https://doi.org/10.1073/pnas.1006542107.

  7. Carbone M, Baris YI, Bertino P, Brass B, Comertpay S, Dogan AU, et al. Erionite exposure in North Dakota and Turkish villages with mesothelioma. Proc Natl Acad Sci U S A. 2011;108(33):13618–23. https://doi.org/10.1073/pnas.1105887108.

    Article  PubMed  PubMed Central  Google Scholar 

  8. Qi F, Okimoto G, Jube S, Napolitano A, Pass HI, Laczko R, et al. Continuous exposure to chrysotile asbestos can cause transformation of human mesothelial cells via HMGB1 and TNF-alpha signaling. Am J Pathol. 2013;183(5):1654–66. https://doi.org/10.1016/j.ajpath.2013.07.029.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Kadariya Y, Menges CW, Talarchek J, Cai KQ, Klein-Szanto AJ, Pietrofesa RA, et al. Inflammation-related IL-1beta/IL-1R Signaling promotes the development of Asbestos-induced malignant mesothelioma. Cancer Prev Res (Phila). 2016;9(5):406–14. https://doi.org/10.1158/1940-6207.capr-15-0347.

  10. Thompson JK, Shukla A, Leggett AL, Munson PB, Miller JM, MacPherson MB, et al. Extracellular signal regulated kinase 5 and inflammasome in progression of mesothelioma. Oncotarget. 2018;9(1):293–305. https://doi.org/10.18632/oncotarget.22968.

    Article  PubMed  Google Scholar 

  11. Jube S, Rivera ZS, Bianchi ME, Powers A, Wang E, Pagano I, et al. Cancer cell secretion of the DAMP protein HMGB1 supports progression in malignant mesothelioma. Cancer Res. 2012;72(13):3290–301. https://doi.org/10.1158/0008-5472.CAN-11-3481.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Yang H, Pellegrini L, Napolitano A, Giorgi C, Jube S, Preti A, et al. Aspirin delays mesothelioma growth by inhibiting HMGB1-mediated tumor progression. Cell Death Dis. 2015;6(6):e1786. https://doi.org/10.1038/cddis.2015.153.

  13. Pellegrini L, Xue J, Larson D, Pastorino S, Jube S, Forest KH, et al. HMGB1 targeting by ethyl pyruvate suppresses malignant phenotype of human mesothelioma. Oncotarget. 2017;8(14):22649–61. https://doi.org/10.18632/oncotarget.15152.

    Article  PubMed  PubMed Central  Google Scholar 

  14. Altomare DA, Vaslet CA, Skele KL, De Rienzo A, Devarajan K, Jhanwar SC, et al. A mouse model recapitulating molecular features of human mesothelioma. Cancer Res. 2005;65(18):8090–5. https://doi.org/10.1158/0008-5472.CAN-05-2312.

    Article  CAS  PubMed  Google Scholar 

  15. Sato T, Sekido Y. NF2/Merlin inactivation and potential therapeutic targets in mesothelioma. Int J Mol Sci. 2018;19(4) https://doi.org/10.3390/ijms19040988.

  16. Rehrauer H, Wu L, Blum W, Pecze L, Henzi T, Serre-Beinier V, et al. How asbestos drives the tissue towards tumors: YAP activation, macrophage and mesothelial precursor recruitment, RNA editing, and somatic mutations. Oncogene. 2018;37(20):2645–59. https://doi.org/10.1038/s41388-018-0153-z.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  17. Heintz NH, Janssen-Heininger YM, Mossman BT. Asbestos, lung cancers, and mesotheliomas: from molecular approaches to targeting tumor survival pathways. Am J Respir Cell Mol Biol. 2010;42(2):133–9. https://doi.org/10.1165/rcmb.2009-0206TR.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Cipriani NA, Abidoye OO, Vokes E, Salgia R. MET as a target for treatment of chest tumors. Lung Cancer. 2009;63(2):169–79. https://doi.org/10.1016/j.lungcan.2008.06.011.

    Article  PubMed  Google Scholar 

  19. Harvey P, Warn A, Dobbin S, Arakaki N, Daikuhara Y, Jaurand MC, et al. Expression of HGF/SF in mesothelioma cell lines and its effects on cell motility, proliferation, and morphology. Br J Cancer. 1998;77(7):1052–9. https://doi.org/10.1038/bjc.1998.176.

  20. Ramos-Nino ME, Scapoli L, Martinelli M, Land S, Mossman BT. Microarray analysis and RNA silencing link fra-1 to cd44 and c-met expression in mesothelioma. Cancer Res. 2003;63(13):3539–45.

    CAS  PubMed  Google Scholar 

  21. Kanteti R, Riehm JJ, Dhanasingh I, Lennon FE, Mirzapoiazova T, Mambetsariev B, et al. PI3 kinase pathway and MET inhibition is efficacious in malignant pleural mesothelioma. Sci Rep. 2016;6:32992. https://doi.org/10.1038/srep32992.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. Roushdy-Hammady I, Siegel J, Emri S, Testa JR, Carbone M. Genetic-susceptibility factor and malignant mesothelioma in the Cappadocian region of Turkey. Lancet. 2001;357(9254):444–5. https://doi.org/10.1016/S0140-6736(00)04013-7.

    Article  CAS  PubMed  Google Scholar 

  23. Carbone M, Emri S, Dogan AU, Steele I, Tuncer M, Pass HI, et al. A mesothelioma epidemic in Cappadocia: scientific developments and unexpected social outcomes. Nat Rev Cancer. 2007;7(2):147–54. https://doi.org/10.1038/nrc2068.

    Article  CAS  PubMed  Google Scholar 

  24. Baumann F, Ambrosi JP, Carbone M. Asbestos is not just asbestos: an unrecognised health hazard. Lancet Oncol. 2013;14(7):576–8. https://doi.org/10.1016/S1470-2045(13)70257-2.

    Article  PubMed  Google Scholar 

  25. Testa JR, Cheung M, Pei J, Below JE, Tan Y, Sementino E, et al. Germline BAP1 mutations predispose to malignant mesothelioma. Nat Genet. 2011;43(10):1022–5. https://doi.org/10.1038/ng.912.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  26. Carbone M, Ferris LK, Baumann F, Napolitano A, Lum CA, Flores EG, et al. BAP1 cancer syndrome: malignant mesothelioma, uveal and cutaneous melanoma, and MBAITs. J Transl Med. 2012;10:179. https://doi.org/10.1186/1479-5876-10-179.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  27. Abdel-Rahman MH, Pilarski R, Cebulla CM, Massengill JB, Christopher BN, Boru G, et al. Germline BAP1 mutation predisposes to uveal melanoma, lung adenocarcinoma, meningioma, and other cancers. J Med Genet. 2011;48(12):856–9. https://doi.org/10.1136/jmedgenet-2011-100156.

    Article  CAS  PubMed  Google Scholar 

  28. Pilarski R, Cebulla CM, Massengill JB, Rai K, Rich T, Strong L, et al. Expanding the clinical phenotype of hereditary BAP1 cancer predisposition syndrome, reporting three new cases. Genes Chromosomes Cancer. 2014;53(2):177–82. https://doi.org/10.1002/gcc.22129.

    Article  CAS  PubMed  Google Scholar 

  29. Carbone M, Flores EG, Emi M, Johnson TA, Tsunoda T, Behner D, et al. Combined genetic and genealogic studies uncover a large BAP1 Cancer syndrome kindred tracing Back nine generations to a common ancestor from the 1700s. PLoS Genet. 2015;11(12):e1005633. https://doi.org/10.1371/journal.pgen.1005633.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Pastorino S, Yoshikawa Y, Pass HI, Emi M, Nasu M, Pagano I, et al. A subset of mesotheliomas with improved survival occurring in carriers of BAP1 and other Germline mutations. J Clin Oncol. 2018;36:3485–94. https://doi.org/10.1200/jco.2018.79.0352.

    Article  CAS  PubMed Central  Google Scholar 

  31. Hassan R, Morrow B, Thomas A, Walsh T, Lee MK, Gulsuner S, et al. Inherited predisposition to malignant mesothelioma and overall survival following platinum chemotherapy. Proc Natl Acad Sci U S A. 2019;116(18):9008–13. https://doi.org/10.1073/pnas.1821510116.

  32. Panou V, Gadiraju M, Wolin A, Weipert CM, Skarda E, Husain AN, et al. Frequency of Germline mutations in Cancer susceptibility genes in malignant mesothelioma. J Clin Oncol. 2018;36(28):2863–71. https://doi.org/10.1200/jco.2018.78.5204.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  33. Carbone M, Yang H, Pass HI, Krausz T, Testa JR, Gaudino G. BAP1 and cancer. Nat Rev Cancer. 2013;13(3):153–9.

    Article  CAS  Google Scholar 

  34. Bononi A, Yang H, Giorgi C, Patergnani S, Pellegrini L, Su M, et al. Germline BAP1 mutations induce a Warburg effect. Cell Death Differ. 2017;24(10):1694–704. https://doi.org/10.1038/cdd.2017.95.

  35. LaFave LM, Béguelin W, Koche R, Teater M, Spitzer B, Chramiec A, et al. Loss of BAP1 function leads to EZH2-dependent transformation. Nat Med. 2015;21(11):1344–9. https://doi.org/10.1038/nm.3947.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  36. McCambridge AJ, Napolitano A, Mansfield AS, Fennell DA, Sekido Y, Nowak AK, et al. Progress in the Management of Malignant Pleural Mesothelioma in 2017. J Thorac Oncol. 2018;13(5):606–23. https://doi.org/10.1016/j.jtho.2018.02.021.

    Article  PubMed  PubMed Central  Google Scholar 

  37. Nasu M, Emi M, Pastorino S, Tanji M, Powers A, Luk H, et al. High incidence of somatic BAP1 alterations in sporadic malignant mesothelioma. J Thorac Oncol. 2015;10(4):565–76. https://doi.org/10.1097/jto.0000000000000471.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  38. Guo G, Chmielecki J, Goparaju C, Heguy A, Dolgalev I, Carbone M, et al. Whole-exome sequencing reveals frequent genetic alterations in BAP1, NF2, CDKN2A, and CUL1 in malignant pleural mesothelioma. Cancer Res. 2015;75(2):264–9. https://doi.org/10.1158/0008-5472.can-14-1008.

    Article  CAS  PubMed  Google Scholar 

  39. Lo Iacono M, Monica V, Righi L, Grosso F, Libener R, Vatrano S, et al. Targeted next-generation sequencing of cancer genes in advanced stage malignant pleural mesothelioma: a retrospective study. J Thorac Oncol. 2015;10(3):492–9. https://doi.org/10.1097/jto.0000000000000436.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haining Yang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Gaudino, G., Minaai, M., Carbone, M., Yang, H. (2021). Biomolecular Pathways in Mesothelioma: What Is New Perspective on Biomolecular Research for Mesothelioma?. In: Nakano, T., Kijima, T. (eds) Malignant Pleural Mesothelioma. Respiratory Disease Series: Diagnostic Tools and Disease Managements. Springer, Singapore. https://doi.org/10.1007/978-981-15-9158-7_4

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9158-7_4

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9157-0

  • Online ISBN: 978-981-15-9158-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics