Skip to main content

Momentum and Density Dependence of the Nuclear Mean Field Using Finite Range Simple Effective Interaction: A Tool for Heavy-Ion Collision Dynamics

  • Conference paper
  • First Online:
Advances in Nuclear Physics

Part of the book series: Springer Proceedings in Physics ((SPPHY,volume 257))

  • 480 Accesses

Abstract

The finite range Simple Effective Interaction (SEI) has been constructed with minimum number of parameters that can simulate the correct trend of momentum dependence of nuclear mean field, as ascertained from the heavy-ion collision experiments at intermediate energy range. Nine parameter combinations of the total eleven interaction parameters required for the complete study of symmetric and isospin asymmetric nuclear matter have been carefully determined, which gives momentum dependence of the nucleonic mean field and equation of state similar in trend to the predictions of microscopic calculations. In the determination of the parameters, one needs to assume the standard values of only three nuclear matter saturation properties, namely, the density, energy per particle, and symmetry energy at saturation in normal nuclear matter. The present formulation has the advantage of varying the density dependence of nuclear symmetry energy where the momentum dependence of the nuclear mean field remains unchanged, and the vice-versa. This can provide quality inputs to the transport model equations solved in the analysis of data of heavy-ion collision experiments in the intermediate energy range. The SEI has also the ability of predicting the finite nucleus properties similar in quality as that of any of the existing effective interaction in the field.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. G.F. Bertsch, S.D. Gupta, A guide to microscopic models for intermediate energy heavy ion collisions. Phys. Rev. 160, 189 (1988)

    Google Scholar 

  2. R. Stock et al., Compression effects in relativistic nucleus-nucleus collisions. Phys. Rev. Lett. 49, 1236 (1982); J.W. Haris et al., Pion production in high-energy nucleus-nucleus collisions. Phys. Rev. Lett. 58, 463 (1987)

    Google Scholar 

  3. H.A. Gustafsson et al., Collective flow observed in relativistic nuclear collisions. Phys. Rev. Lett. 52, 1590 (1984); G. Buchwald et al., Kinetic energy flow in Nb (400 AMeV ) + Nb: evidence for hydrodynamic compression of nuclear matter. Phys. Rev. Lett. 52, 1594 (1984)

    Google Scholar 

  4. B. Friedman, V.R. Pandharipande, Hot and cold, nuclear and neutron matter. Nucl. Phys. A 361, 502 (1981)

    Article  ADS  Google Scholar 

  5. C. Gale, G. Bertsch, S.D. Gupta, Heavy-ion collision theory with momentum-dependent interactions. Phys. Rev. C 35, 1666 (1987)

    Article  ADS  Google Scholar 

  6. J. Aichelin, A. Rosenhauer, G. Peilert, H. Stoecker, W. Greiner, Importance of momentum-dependent interactions for the extraction of the nuclear equation of state from high-energy heavy-ion collisions. Phys. Rev. Lett. 58, 1926 (1987)

    Article  ADS  Google Scholar 

  7. L.P. Csernai, G. Fai, C. Gale, E. Osnes, Nuclear equation of state with momentum-dependent interactions. Phys. Rev. C 46, 736 (1992)

    Article  ADS  Google Scholar 

  8. M. Prakash, T.T.S. Kuo, S.D. Gupta, Momentum dependence, Boltzmann-Uehling-Uhlenbeck calculations, and transverse momenta. Phys. Rev. C 37, 2253 (1988)

    Article  ADS  Google Scholar 

  9. G.M. Welke, M. Prakash, T.T.S. Kuo, S.D. Gupta, C. Gale, Azimuthal distributions in heavy ion collisions and the nuclear equation of state. Phys. Rev. C 38, 2101 (1988)

    Article  ADS  Google Scholar 

  10. C. Gale, G.M. Welke, M. Prakash, S.J. Lee, S.D. Gupta, Transverse momenta, nuclear equation of state, and momentum-dependent interactions in heavy-ion collisions. Phys. Rev. C 41, 1545 (1990)

    Article  ADS  Google Scholar 

  11. Q. Pan, P. Danielewicz, From sideward flow to nuclear compressibility. Phys. Rev. Lett. 70, 2062 (1993)

    Article  ADS  Google Scholar 

  12. J. Zhang, S.D. Gupta, C. Gale, Momentum-dependent nuclear mean fields and collective flow in heavy-ion collisions. Phys. Rev. C 50, 1617 (1994)

    Article  ADS  Google Scholar 

  13. F. Haddad, F. Sebille, M. Farine, V. de la Mota, P. Schuck, B. Jouault, Effects of Gogny-type interactions on the nuclear flow. Phys. Rev. C 52, 2013 (1995)

    Article  ADS  Google Scholar 

  14. B.A. Li, C.M. Ko, Z.Z. Ren, Equation of state of asymmetric nuclear matter and collisions of neutron-rich nuclei. Phys. Rev. Lett. 78, 1644 (1997); B.A. Li, Neutron-proton differential flow as a probe of isospin-dependence of the nuclear equation of state. Phys. Rev. Lett. 85, 4221 (2000); B.A. Li, Probing the high density behavior of the nuclear symmetry energy with high energy heavy-ion collisions. Phys. Rev. Lett. 88, 192701 (2002)

    Google Scholar 

  15. I. Bombaci, Isospin Physics in Heavy-Ion Collisions at Intermediate Energies, ed. by B.A. Li, W.U. Schroder (Nova Science, New York, 2001), p. 35

    Google Scholar 

  16. M. Prakash, I. Bombaci, M. Prakash, P.J. Ellis, R. Knorren, J.M. Lattimer, Composition and structure of protoneutron stars. Phys. Rep. 280, 1 (1997)

    Article  ADS  Google Scholar 

  17. C.B. Das, S.D. Gupta, C. Gale, B.A. Li, Momentum dependence of symmetry potential in asymmetric nuclear matter for transport model calculations. Phys. Rev. C 67, 034611 (2003)

    Article  ADS  Google Scholar 

  18. A. Ono, P. Danielewicz, W.A. Friedman, W.G. Lynch, M.B. Tsang, Symmetry energy for fragmentation in dynamical nuclear collisions. Phys. Rev. C 70, 041604 (R) (2004)

    Google Scholar 

  19. G.A. Souliotis, D.V. Shetty, A. Keksis, E. Bell, M. Jandel, M. Veselsky, S.J. Yennello, Heavy-residue isoscaling as a probe of the symmetry energy of hot fragments. Phys. Rev. C 73, 024606 (2006)

    Article  ADS  Google Scholar 

  20. D.V. Shetty, S.J. Yennello, G.A. Souliotis, Density dependence of the symmetry energy and the nuclear equation of state: a dynamical and statistical model perspective. Phys. Rev. C 76, 024606 (2007)

    Article  ADS  Google Scholar 

  21. J. Xu, L.W. Chen, B.A. Li, H.R. Ma, Temperature effects on the nuclear symmetry energy and symmetry free energy with an isospin and momentum dependent interaction. Phys. Rev. C 75, 014607 (2007)

    Article  ADS  Google Scholar 

  22. M.B. Tsang, Y. Zhang, P. Danielewicz, M. Famiano, Z. Li, W.G. Lynch, A.W. Steiner, Constraints on the density dependence of the symmetry energy. Phys. Rev. Lett. 102, 122701 (2009)

    Article  ADS  Google Scholar 

  23. A. Klimkiewicz et al., Nuclear symmetry energy and neutron skins derived from pygmy dipole resonances. Phys. Rev. C 76, 051603 (2007)

    Article  ADS  Google Scholar 

  24. L. Trippa, G. Colò, E. Vigezzi, Giant dipole resonance as a quantitative constraint on the symmetry energy. Phys. Rev. C 77, 061304 (2008)

    Article  ADS  Google Scholar 

  25. J. Rizzo, M. Colonna, M. Di Toro, V. Greco, Transport properties of isospin effective mass splitting. Nucl. Phys. A 732, 202 (2004)

    Google Scholar 

  26. B.A. Li, C.B. Das, S.D. Gupta, C. Gale, Effects of momentum-dependent symmetry potential on heavy-ion collisions induced by neutron-rich nuclei. Nucl. Phys. A 735, 563 (2004)

    Article  ADS  Google Scholar 

  27. T. Lesinski, K. Bennaceur, T. Duguet, J. Mayer, Isovector splitting of nucleon effective masses, ab initio benchmarks and extended stability criteria for Skyrme energy functionals. Phys. Rev. C 74, 044315 (2006)

    Article  ADS  Google Scholar 

  28. A.M. Lane, Isobaric spin dependence of the optical potential and quasi-elastic (p, n) reactions. Nucl. Phys. 35, 676 (1962)

    Article  Google Scholar 

  29. P.E. Hodgson, The Nucleon Optical Model (World Scientific, Singapore, 1994), p. 613

    Google Scholar 

  30. G.W. Hoffmann, W.R. Coker, Coupled-channel calculations of the energy dependence of the (p, n) charge-exchange reaction. Phys. Rev. Lett. 29, 227 (1972)

    Article  ADS  Google Scholar 

  31. A.J. Koning, J.P. Delaroche, Local and global nucleon optical models from 1 keV to 200 MeV. Nucl. Phys. A 713, 231 (2003)

    Article  ADS  Google Scholar 

  32. B. Behera, T.R. Routray, R.K. Satpathy, Causal violation of the speed of sound and the equation of state of nuclear matter. J. Phys. G: Nucl. Part. Phys. 23, 445 (1997)

    Article  ADS  Google Scholar 

  33. B. Behera, T.R. Routray, R.K. Satpathy, Momentum and density dependence of the mean field in nuclear matter. J. Phys. G: Nucl. Part. Phys. 24, 2073 (1998)

    Google Scholar 

  34. R.B. Wiringa, Single-particle potential in dense nuclear matter. Phys. Rev. C 38, 2967 (1988)

    Article  ADS  Google Scholar 

  35. L.G. Arnold et al., Energy dependence of the p - \(^{40}\)Ca optical potential: a Dirac equation perspective. Phys. Rev. C 25, 936 (1982)

    Google Scholar 

  36. P. Danielewicz, R. Lacey, W.G. Lynch, Determination of the equation of state of dense matter. Science 298, 1592 (2002)

    Article  ADS  Google Scholar 

  37. W.G. Lynch, M.B. Tsang, Y. Zhang, P. Danielewicz, M. Famiano, Z. Li, A.W. Steiner, Probing the symmetry energy with heavy ions. Prog. Part. Nucl. Phys. 62, 427 (2009)

    Article  ADS  Google Scholar 

  38. B. Behera, T.R. Routray, S.K. Tripathy, Temperature dependence of the nuclear symmetry energy and equation of state of charge neutral n+ p+ e+ \(\mu \) matter in beta equilibrium. J. Phys. G: Nucl. Part. Phys. 36, 125105 (2009)

    Google Scholar 

  39. F. Sammarruca, The microscopic approach to nuclear matter and neutron star matter. Int. J. Mod. Phys. E 19, 1259 (2010)

    Article  ADS  Google Scholar 

  40. T.R. Routray, X. Viñas, D.N. Basu, S.P. Pattnaik, M. Centelles, L.M. Robledo, B. Behera, Exact versus Taylor-expanded energy density in the study of the neutron star crustâcore transition. J. Phys. G: Nucl. Part. Phys. 43, 105101 (2016)

    Google Scholar 

  41. S.P. Pattnaik, T.R. Routray, X. Viñas, D.N. Basu, M. Centelles, K. Madhuri, B. Behera, Influence of the nuclear matter equation of state on the r-mode instability using the finite-range simple effective interaction. J. Phys. G: Nucl. Part. Phys. 45, 055202 (2018)

    Article  ADS  Google Scholar 

  42. B. Behera, X. Viñas, M. Bhuyan, T.R. Routray, B.K. Sharma, S.K. Patra, Simple effective interaction: infinite nuclear matter and finite nuclei. J. Phys. G: Nucl. Part. Phys. 40, 095105 (2013)

    Article  ADS  Google Scholar 

  43. B. Behera, X. Viñas, T.R. Routray, L.M. Robledo, M. Centelles, S.P. Pattnaik, Deformation properties with a finite-range simple effective interaction. J. Phys. G: Nucl. Part. Phys. 43, 045115 (2016)

    Article  ADS  Google Scholar 

  44. B. Behera, X. Viñas, T.R. Routray, M. Centelles, Study of spin polarized nuclear matter and finite nuclei with finite range simple effective interaction. J. Phys. G: Nucl. Part. Phys. 42, 045103 (2015)

    Article  ADS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to T. R. Routray .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Routray, T.R., Viñas, X., Behera, B. (2021). Momentum and Density Dependence of the Nuclear Mean Field Using Finite Range Simple Effective Interaction: A Tool for Heavy-Ion Collision Dynamics. In: Puri, R.K., Aichelin, J., Gautam, S., Kumar, R. (eds) Advances in Nuclear Physics. Springer Proceedings in Physics, vol 257. Springer, Singapore. https://doi.org/10.1007/978-981-15-9062-7_17

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-9062-7_17

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-9061-0

  • Online ISBN: 978-981-15-9062-7

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics