Skip to main content

Introduction of Diabetes Mellitus and Future Prospects of Natural Products on Diabetes Mellitus

  • Chapter
  • First Online:
Structure and Health Effects of Natural Products on Diabetes Mellitus

Abstract

Diabetes mellitus is a chronic disease caused by inherited and/or acquired deficiency or due to ineffective insulin production by the pancreas. There is a great need for its medication, and natural products play an important role in the treatments of diabetes. This chapter mainly summarizes the introduction, the progress in the medication of diabetes mellitus, and use of natural products in the treatment of diabetes mellitus.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 119.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 159.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 159.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gordin D, Shah H, Shinjo T, St-Louis R, Qi W, Park K, Paniagua SM, Pober DM, Wu IH, Bahnam V, Brissett MJ, Tinsley LJ, Dreyfuss JM, Pan H, Dong Y, Niewczas MA, Amenta P, Sadowski T, Kannt A, Keenan HA, King GL (2019) Characterization of glycolytic enzymes and pyruvate kinase M2 in type 1 and 2 diabetic nephropathy. Diabetes Care 42(7):1263–1273. https://doi.org/10.2337/dc18-2585

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Munhoz A, Frode TS (2018) Isolated compounds from natural products with potential antidiabetic activity-A systematic review. Curr Diabetes Rev 14(1):36–106

    CAS  PubMed  Google Scholar 

  3. Kahn SE, Cooper ME, Del Prato S (2014) Pathophysiology and treatment of type 2 diabetes: perspectives on the past, present, and future. Lancet 383(9922):1068–1083

    Article  CAS  PubMed  Google Scholar 

  4. Miranda PJ, DeFronzo RA, Califf RM, Guyton JR (2005) Metabolic syndrome: evaluation of pathological and therapeutic outcomes. Am Heart J 149(1):20–32

    Article  PubMed  Google Scholar 

  5. Lin Y, Sun Z (2010) Current views on type 2 diabetes. J Endocrinol 204:1):1

    PubMed  Google Scholar 

  6. Zhou Y, Huang Y, Ji X, Wang X, Shen L, Wang Y (2020) Pioglitazone for the primary and secondary prevention of cardiovascular and renal outcomes in patients with or at high risk of type 2 diabetes mellitus: a meta-analysis. J Clin Endocrinol Metab 105(5). https://doi.org/10.1210/clinem/dgz252

  7. Prabhakar PK, Doble M (2011) Mechanism of action of natural products used in the treatment of diabetes mellitus. Chin J Integr Med 17(8):563

    Article  PubMed  Google Scholar 

  8. Li S, Yang H, Chen X (2019) Protective effects of sulforaphane on diabetic retinopathy: activation of the Nrf2 pathway and inhibition of NLRP3 inflammasome formation. Exp Anim 68(2):221–231. https://doi.org/10.1538/expanim.18-0146

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Liu J, Nile SH, Xu G, Wang Y, Kai G (2019) Systematic exploration of Astragalus membranaceus and Panax ginseng as immune regulators: insights from the comparative biological and computational analysis. Phytomedicine:153077–153077. https://doi.org/10.1016/j.phymed.2019.153077

  10. Chen X-W, He Z-X, Zhou Z-W, Yang T, Zhang X, Yang Y-X, Duan W, Zhou S-F (2015) An update on the clinical pharmacology of the dipeptidyl peptidase 4 inhibitor alogliptin used for the treatment of type 2 diabetes mellitus. Clin Exp Pharmacol Physiol 42(12):1225–1238. https://doi.org/10.1111/1440-1681.12469

    Article  CAS  PubMed  Google Scholar 

  11. Schmitt EK, Moore CM, Krastel P, Petersen F (2011) Natural products as catalysts for innovation: a pharmaceutical industry perspective. Curr Opin Chem Biol 15(4):497–504

    Article  CAS  PubMed  Google Scholar 

  12. Moradi-Marjaneh R, Paseban M, Sahebkar A (2019) Natural products with SGLT2 inhibitory activity: possibilities of application for the treatment of diabetes. Phytother Res 33(10):2518–2530. https://doi.org/10.1002/ptr.6421

    Article  CAS  PubMed  Google Scholar 

  13. Tong L, Adler S (2018) Glycemic control of type 2 diabetes mellitus across stages of renal impairment: information for primary care providers. Postgrad Med 130(4):381–393. https://doi.org/10.1080/00325481.2018.1457397

    Article  PubMed  Google Scholar 

  14. Braga T, Kraemer-Aguiar LG, Docherty NG, Le Roux CW (2019) Treating prediabetes: why and how should we do it? Minerva Med 110(1):52–61. https://doi.org/10.23736/s0026-4806.18.05897-4

    Article  PubMed  Google Scholar 

  15. Gooßen K, Gräber S (2012) Longer term safety of dipeptidyl peptidase-4 inhibitors in patients with type 2 diabetes mellitus: systematic review and meta-analysis. Diabetes Obes Metab 14(12):1061–1072

    Article  PubMed  Google Scholar 

  16. He J-H, Chen L-X, Li H (2019) Progress in the discovery of naturally occurring anti-diabetic drugs and in the identification of their molecular targets. Fitoterapia 134:270–289

    Article  CAS  PubMed  Google Scholar 

  17. Acharya KG, Shah KN, Solanki ND, Rana DA (2013) Evaluation of antidiabetic prescriptions, cost and adherence to treatment guidelines: a prospective, cross-sectional study at a tertiary care teaching hospital. J Basic Clin Pharm 4(4):82–87. https://doi.org/10.4103/0976-0105.121653

    Article  PubMed  PubMed Central  Google Scholar 

  18. Donga J, Surani V, Sailor G, Chauhan S, Seth A (2011) A systematic review on natural medicine used for therapy of diabetes mellitus of some Indian medicinal plants. Pharm Sci Monit 2(1):36–72

    Google Scholar 

  19. Xu L, Li Y, Dai Y, Peng J (2018) Natural products for the treatment of type 2 diabetes mellitus: pharmacology and mechanisms. Pharmacol Res 130:451–465

    Article  CAS  PubMed  Google Scholar 

  20. Perla V, Jayanty SS (2013) Biguanide related compounds in traditional antidiabetic functional foods. Food Chem 138(2–3):1574–1580

    Article  CAS  PubMed  Google Scholar 

  21. Dzydzan O, Bila I, Kucharska AZ, Brodyak I, Sybirna N (2019) Antidiabetic effects of extracts of red and yellow fruits of cornelian cherries (Cornus mas L.) on rats with streptozotocin-induced diabetes mellitus. Food Funct 10(10):6459–6472. https://doi.org/10.1039/c9fo00515c

    Article  CAS  PubMed  Google Scholar 

  22. Matsui T, Ueda T, Oki T, Sugita K, Terahara N, Matsumoto K (2001) α-Glucosidase inhibitory action of natural acylated anthocyanins. 1. Survey of natural pigments with potent inhibitory activity. J Agric Food Chem 49(4):1948–1951

    Article  CAS  PubMed  Google Scholar 

  23. Bedekar A, Shah K, Koffas M (2010) Natural products for type II diabetes treatment. In: Advances in applied microbiology, vol 71. Elsevier, Amsterdam, pp 21–73

    Google Scholar 

  24. Luis Ros J, Francini F, Schinella GR (2015) Natural products for the treatment of type 2 diabetes mellitus. Planta Med 81(12–13):975–994. https://doi.org/10.1055/s-0035-1546131

    Article  CAS  Google Scholar 

  25. Carter P, Gray LJ, Troughton J, Khunti K, Davies MJ (2010) Fruit and vegetable intake and incidence of type 2 diabetes mellitus: systematic review and meta-analysis. BMJ 341:c4229

    Article  PubMed  PubMed Central  Google Scholar 

  26. Alam F, Islam A, Khalil I, Hua Gan S (2016) Metabolic control of type 2 diabetes by targeting the GLUT4 glucose transporter: intervention approaches. Curr Pharm Des 22(20):3034–3049

    Article  CAS  PubMed  Google Scholar 

  27. Bunel V, Ouedraogo M, Nguyen AT, Stévigny C, Duez P (2014) Methods applied to the in vitro primary toxicology testing of natural products: state of the art, strengths, and limits. Planta Med 80(14):1210–1226

    Article  CAS  PubMed  Google Scholar 

  28. David B, Wolfender J-L, Dias DA (2015) The pharmaceutical industry and natural products: historical status and new trends. Phytochem Rev 14(2):299–315

    Article  CAS  Google Scholar 

  29. Ezuruike UF, Prieto JM (2014) The use of plants in the traditional management of diabetes in Nigeria: pharmacological and toxicological considerations. J Ethnopharmacol 155(2):857–924

    Article  CAS  PubMed  Google Scholar 

  30. Sun X, Yu W, Hu C (2014) Genetics of type 2 diabetes: insights into the pathogenesis and its clinical application. Biomed Res Int 2014:926713

    Google Scholar 

  31. Moloney MG (2016) Natural products as a source for novel antibiotics. Trends Pharmacol Sci 37(8):689–701

    Article  CAS  PubMed  Google Scholar 

  32. Ahmad NM (2016) Solubility-driven lead optimisation: recent examples and personal perspectives. Bioorg Med Chem Lett 26(13):2975–2979

    Article  CAS  PubMed  Google Scholar 

  33. Lee W-H, Loo C-Y, Young PM, Traini D, Mason RS, Rohanizadeh R (2014) Recent advances in curcumin nanoformulation for cancer therapy. Expert Opin Drug Deliv 11(8):1183–1201

    Article  CAS  PubMed  Google Scholar 

  34. Lepsik M, Sommer R, Kuhaudomlarp S, Lelimousin M, Paci E, Varrot A, Titz A, Imberty A (2019) Induction of rare conformation of oligosaccharide by binding to calcium-dependent bacterial lectin: X-ray crystallography and modelling study. Eur J Med Chem 177:212–220. https://doi.org/10.1016/j.ejmech.2019.05.049

    Article  CAS  PubMed  Google Scholar 

  35. Hunt JT (2009) Discovery of ixabepilone. Mol Cancer Ther 8(2):275–281

    Article  CAS  PubMed  Google Scholar 

  36. Hubbs JL, Fuller NO, Austin WF, Shen R, Creaser SP, McKee TD, Loureiro RM, Tate B, Xia W, Ives J (2012) Optimization of a natural product-based class of γ-secretase modulators. J Med Chem 55(21):9270–9282

    Article  CAS  PubMed  Google Scholar 

  37. Haupt VJ, Schroeder M (2011) Old friends in new guise: repositioning of known drugs with structural bioinformatics. Brief Bioinform 12(4):312–326

    Article  CAS  PubMed  Google Scholar 

  38. Novac N (2013) Challenges and opportunities of drug repositioning. Trends Pharmacol Sci 34(5):267–272

    Article  CAS  PubMed  Google Scholar 

  39. Kuhn M, Campillos M, Letunic I, Jensen LJ, Bork P (2010) A side effect resource to capture phenotypic effects of drugs. Mol Syst Biol 6(1):343

    Google Scholar 

  40. Plake C, Schroeder M (2011) Computational polypharmacology with text mining and ontologies. Curr Pharm Biotechnol 12(3):449–457

    Article  CAS  PubMed  Google Scholar 

  41. Vilar S, Hripcsak G (2017) The role of drug profiles as similarity metrics: applications to repurposing, adverse effects detection and drug-drug interactions. Brief Bioinform 18(4):670–681. https://doi.org/10.1093/bib/bbw048

    Article  CAS  PubMed  Google Scholar 

  42. Ab Ghani NS, Ramlan EI, Firdaus-Raih M (2019) Drug ReposER: a web server for predicting similar amino acid arrangements to known drug binding interfaces for potential drug repositioning. Nucleic Acids Res 47(W1):W350–W356. https://doi.org/10.1093/nar/gkz391

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  43. Spallone V (2019) Update on the impact, diagnosis and management of cardiovascular autonomic neuropathy in diabetes: what is defined, what is new, and what is unmet. Diabetes Metab J 43(1):3–30. https://doi.org/10.4093/dmj.2018.0259

    Article  PubMed  Google Scholar 

  44. Prabhakar P, Kumar A, Doble M (2014) Combination therapy: a new strategy to manage diabetes and its complications. Phytomedicine 21(2):123–130

    Article  CAS  PubMed  Google Scholar 

  45. Bijnsdorp IV, Giovannetti E, Peters GJ (2011) Analysis of drug interactions. In: Cancer cell culture. Springer, Berlin, pp 421–434

    Chapter  Google Scholar 

  46. Association AD (2014) Diagnosis and classification of diabetes mellitus. Diabetes Care 37(Suppl 1):S81–S90

    Article  Google Scholar 

  47. Willett WC, Koplan JP, Nugent R, Dusenbury C, Puska P, Gaziano TA (2006) Prevention of chronic disease by means of diet and lifestyle changes. In: Disease control priorities in developing countries, 2nd edn. The International Bank for Reconstruction and Development/The World Bank

    Google Scholar 

  48. van den Berk-Clark C, Secrest S, Walls J, Hallberg E, Lustman PJ, Schneider FD, Scherrer JF (2018) Association between posttraumatic stress disorder and lack of exercise, poor diet, obesity, and co-occuring smoking: a systematic review and meta-analysis. Health Psychol 37(5):407–416. https://doi.org/10.1037/hea0000593

    Article  PubMed  PubMed Central  Google Scholar 

  49. Allende-Vigo MZ (2015) Diabetes mellitus prevention. Am J Ther 22(1):68–72

    Article  PubMed  Google Scholar 

  50. Anuradha CV (2013) Phytochemicals targeting genes relevant for type 2 diabetes. Can J Physiol Pharmacol 91(6):397–411

    Article  CAS  PubMed  Google Scholar 

  51. Choi C-Y, Cho S-S, Yoon I-S (2018) Hot-water extract of the branches of Hovenia dulcis Thunb. (Rhamnaceae) ameliorates low-fiber diet-induced constipation in rats. Drug Des Dev Ther 12:695–703. https://doi.org/10.2147/dddt.s150284

    Article  CAS  Google Scholar 

  52. Wise J (2014) A third of adults in England have “prediabetes,” study says. BMJ 348:g3791

    Article  PubMed  Google Scholar 

  53. Mukai N, Doi Y, Ninomiya T, Hirakawa Y, Nagata M, Yoshida D, Hata J, Fukuhara M, Nakamura U, Kitazono T (2014) Trends in the prevalence of type 2 diabetes and prediabetes in community-dwelling Japanese subjects: the Hisayama study. J Diabet Invest 5(2):162–169

    Article  Google Scholar 

  54. WHO (2013) WHO traditional medicine strategy: 2014–2023. World Health Organization, Geneva

    Google Scholar 

  55. Ríos JL, Francini F, Schinella GR (2015) Natural products for the treatment of type 2 diabetes mellitus. Planta Med 81(12/13):975–994

    Article  PubMed  CAS  Google Scholar 

  56. Yao H, Liu J, Xu S, Zhu Z, Xu J (2017) The structural modification of natural products for novel drug discovery. Expert Opin Drug Discovery 12(2):121–140

    Article  CAS  Google Scholar 

  57. Bauer A, Brönstrup M (2014) Industrial natural product chemistry for drug discovery and development. Nat Prod Rep 31(1):35–60

    Article  CAS  PubMed  Google Scholar 

  58. Chen J, Li W, Yao H, Xu J (2015) Insights into drug discovery from natural products through structural modification. Fitoterapia 103:231–241

    Article  CAS  PubMed  Google Scholar 

  59. Di S, Han L, Wang Q, Liu X, Yang Y, Li F, Zhao L, Tong X (2018) A network pharmacology approach to uncover the mechanisms of Shen-qi-di-huang decoction against diabetic nephropathy. Evid Based Complement Alternat Med 2018:7043402

    Google Scholar 

  60. Alam F, Islam MA, Kamal MA, Gan SH (2018) Updates on managing type 2 diabetes mellitus with natural products: towards antidiabetic drug development. Curr Med Chem 25(39):5395–5431

    Article  CAS  PubMed  Google Scholar 

  61. Clarence O, Donatus B, Samuel E (2014) Prophylaxis and treatment of types 1 and 2 diabetes mellitus. Int J Dis Disord 2:65–73

    Google Scholar 

  62. Newman DJ, Cragg GM (2016) Natural products as sources of new drugs from 1981 to 2014. J Nat Prod 79(3):629–661

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Haixia Chen .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Chen, H., Li, R. (2021). Introduction of Diabetes Mellitus and Future Prospects of Natural Products on Diabetes Mellitus. In: Chen, H., Zhang, M. (eds) Structure and Health Effects of Natural Products on Diabetes Mellitus. Springer, Singapore. https://doi.org/10.1007/978-981-15-8791-7_1

Download citation

Publish with us

Policies and ethics