Skip to main content

PVA/BC Bionancomposite Films with Particle Size Effect

  • Chapter
  • First Online:
Multiscaled PVA Bionanocomposite Films
  • 169 Accesses

Abstract

The use of conventional carbon-based nanofillers such as carbon nanotubes (CNTs) and graphene sheets can be hindered to a certain extent when considering a high level of nanotoxicity via human inhalation and less cost-effectiveness for CNTs while the agglomeration of graphene sheets in polymer matrices. As such, bamboo charcoals (BCs) are suggested as alternative ecofriendly and sustainable carbon-based particles with good affinity to polyvinyl alcohol (PVA) as one of most popular water-soluble biopolymers in order to prepare PVA/BC bionanocomposites with superior material properties. In this chapter, two different types of BC particles, namely microdiameter bamboo charcoals (MBCs) and nanodiameter bamboo charcoals (NBCs), were successfully fabricated using a solution casting method. Nanofiller reinforcement effect was investigated with respect to BC particle size and dispersion, morphological structures and interfacial interactions between BCs and PVA matrices in such bionanocomposites. Overall, the addition of NBCs gave rise to much higher mechanical properties of PVA/NBC bionanocomposites as opposed to PVA/MBC counterparts. The maximum increases in tensile moduli of bionanocomposites were achieved up to 123 and 100% with the inclusion of 10 wt% NBCs and MBCs, respectively. Furthermore, corresponding tensile strengths were enhanced by 110 and 72% when incorporated with 3 wt% NBCs and MBCs accordingly, as compared with that of PVA. It is convincing that associated particle dispersion states within PVA matrices, as well as interfacial interaction between BCs and PVA matrices play a leading role in the remarkable property enhancement in PVA/BC bionanocomposites, which can be potentially used in material packaging and biomedical applications.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 109.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 139.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 139.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Zhu J, Jia J, Tjong SC (2014) Preparation, structure, and application of carbon nanotubes/bamboo charcoal composite. In: Tjong SC (ed) Nanocrystalline materials: their synthesis-structure-property relationships, 2nd edn. Elsevier, London, pp 1–25

    Google Scholar 

  2. Gray M, Johnson MG, Dragila MI, Kleber M (2014) Water uptake in biochars: the roles of porosity and hydrophobicity. Biomass Bioenerg 61:196–205

    Article  Google Scholar 

  3. Brockhoff SR, Christians NE, Killorn RJ, Horton R, Davis DD (2010) Physical and mineral-nutrition properties of sand-based turfgrass root zones amended with biochar. Agron J 102(6):1627–1631

    Article  Google Scholar 

  4. Ho MP, Lau KT, Wang H, Hui D (2015) Improvement on the properties of polylactic acid (PLA) using bamboo charcoal particles. Compos Part B Eng 81:14–25

    Article  Google Scholar 

  5. You Z, Li D (2014) Highly filled bamboo charcoal powder reinforced ultra-high molecular weight polyethylene. Mater Lett 122:121–124

    Article  Google Scholar 

  6. Wu KH, Ting TH, Wang GP, Yang CC, Tsai CW (2008) Synthesis and microwave electromagnetic characteristics of bamboo charcoal/polyaniline composites in 2–40 GHz. Synth Met 158(17–18):688–694

    Article  Google Scholar 

  7. Li S, Li X, Chen C, Wang H, Deng Q, Gong M, Li D (2016) Development of electrically conductive nano bamboo charcoal/ultra-high molecular weight polyethylene composites with a segregated network. Compos Sci Technol 132:31–37

    Article  Google Scholar 

  8. Srinivasan P, Sarmah AK, Smernik R, Das O, Farid M, Gao W (2015) A feasibility study of agricultural and sewage biomass as biochar, bioenergy and biocomposite feedstock: production, characterization and potential applications. Sci Total Environ 512:495–5053

    Article  ADS  Google Scholar 

  9. Mousa M, Dong Y (2017) Strong poly (vinyl alcohol)(PVA)/bamboo charcoal (BC) nanocomposite films with particle size effect. ACS Sustain Chem Eng 6(1):467–479

    Article  Google Scholar 

  10. Das O, Sarmah AK, Bhattacharyya D (2015) A novel approach in organic waste utilization through biochar addition in wood/polypropylene composites. Waste Manage 38:132–140

    Article  Google Scholar 

  11. She B, Tao X, Huang T, Lu G, Zhou Z, Guo C, Dang Z (2016) Effects of nano bamboo charcoal on PAHs-degrading strain Sphingomonas sp. GY2B. Ecotoxicol Environ Saf 125:35–42

    Article  Google Scholar 

  12. Wang XJ, Wang Y, Wang X, Liu M, Xia SQ, Yin DQ, Zhang YL, Zhao JF (2011) Microwave-assisted preparation of bamboo charcoal-based iron-containing adsorbents for Cr (VI) removal. Chem Eng J 174(1):326–332

    Article  Google Scholar 

  13. Pirzada T, Arvidson SA, Saquing CD, Shah SS, Khan SA (2012) Hybrid silica–PVA nanofibers via sol–gel electrospinning. Langmuir 28(13):5834–5844

    Article  Google Scholar 

  14. Yang X, Li L, Shang S, Tao XM (2010) Synthesis and characterization of layer-aligned poly (vinyl alcohol)/graphene nanocomposites. Polymer 51(15):3431–3435

    Article  Google Scholar 

  15. Niu YF, Yang Y, Gao S, Yao JW (2016) Mechanical mapping of the interphase in carbon fiber reinforced poly (ether-ether-ketone) composites using peak force atomic force microscopy: interphase shrinkage under coupled ultraviolet and hydro-thermal exposure. Polym Testing 55:257–260

    Article  Google Scholar 

  16. Hossain MA, Islam S, Chowdhury FA, Mohiuddin TG, Uchida K, Tamura T, Sugawa K, Mochida T, Otsuki J, Alam MS (2016) Structural, mechanical, and electrical properties of carbon nanoparticles synthesized from diesel. Fuller Nanotub Car N 24(1):43–51

    Article  Google Scholar 

  17. Suk JW, Piner RD, An J, Ruoff RS (2010) Mechanical properties of monolayer graphene oxide. ACS Nano 4(11):6557–6564

    Article  Google Scholar 

  18. Demczyk BG, Wang YM, Cumings J, Hetman M, Han W, Zettl A, Ritchie RO (2002) Direct mechanical measurement of the tensile strength and elastic modulus of multiwalled carbon nanotubes. Mater Sci Eng, A 334(1–2):173–178

    Article  Google Scholar 

  19. Putz KW, Compton OC, Palmeri MJ, Nguyen ST, Brinson LC (2010) High-nanofiller-content graphene oxide–polymer nanocomposites via vacuum-assisted self-assembly. Adv Funct Mater 20(19):3322–3329

    Article  Google Scholar 

  20. Chang Y, Yang ST, Liu JH, Dong E, Wang Y, Cao A, Liu Y, Wang H (2011) In vitro toxicity evaluation of graphene oxide on A549 cells. Toxicol Lett 200(3):201–210

    Article  Google Scholar 

  21. Mousa MH, Dong Y, Davies IJ (2016) Recent advances in bionanocomposites: preparation, properties, and applications. Int J Polym Mater Polym Biomater 65(5):225–254

    Article  Google Scholar 

  22. Fu D, Zhang Y, Lv F, Chu PK, Shang J (2012) Removal of organic materials from TNT red water by bamboo charcoal adsorption. Chem Eng J 193:39–49

    Article  Google Scholar 

  23. Lorenzon M, Evangelio L, Verhaeghe S, Nicolet C, Navarro C, Pérez-Murano F (2015) Assessing the local nanomechanical properties of self-assembled block copolymer thin films by peak force tapping. Langmuir 31(42):11630–11638

    Article  Google Scholar 

  24. Li S, Li X, Deng Q, Li D (2015) Three kinds of charcoal powder reinforced ultra-high molecular weight polyethylene composites with excellent mechanical and electrical properties. Mater Des 85:54–59

    Article  ADS  Google Scholar 

  25. Yang E, Yao C, Liu Y, Zhang C, Jia L, Li D, Fu Z, Sun D, Kirk SR, Yin D (2018) Bamboo-derived porous biochar for efficient adsorption removal of dibenzothiophene from model fuel. Fuel 211:121–129

    Article  Google Scholar 

  26. Lu L, Sun H, Peng F, Jiang Z (2006) Novel graphite-filled PVA/CS hybrid membrane for pervaporation of benzene/cyclohexane mixtures. J Membrane Sci 281(1–2):245–252

    Article  Google Scholar 

  27. Mousa MH (2018) Experimental characterisation and modelling of sustainable multiscaled bionanocomposites. Ph.D. thesis, Curtin University, Perth, Australia

    Google Scholar 

  28. Cheng HKF, Sahoo NG, Tan YP, Pan Y, Bao H, Li L, Chan SH, Zhao J (2012) Poly (vinyl alcohol) nanocomposites filled with poly (vinyl alcohol)-grafted graphene oxide. ACS Appl Mater Interfaces 4(5):2387–2394

    Article  Google Scholar 

  29. Zhang J, Lei W, Liu D, Wang X (2017) Synergistic influence from the hybridization of boron nitride and graphene oxide nanosheets on the thermal conductivity and mechanical properties of polymer nanocomposites. Compos Sci Technol 151:252–257

    Article  Google Scholar 

  30. Mousa M, Dong Y (2020) The role of nanoparticle shapes and structures in the material characterisation of polyvinyl alcohol (PVA) bionanocomposite films. Polymers 12:264

    Google Scholar 

  31. Liang J, Huang Y, Zhang L, Wang Y, Ma Y, Guo T, Chen Y (2009) Molecular-level dispersion of graphene into poly (vinyl alcohol) and effective reinforcement of their nanocomposites. Adv Funct Mater 19(14):2297–2302

    Article  Google Scholar 

  32. Xu Y, Hong W, Bai H, Li C, Shi G (2009) Strong and ductile poly (vinyl alcohol)/graphene oxide composite films with a layered structure. Carbon 47(15):3538–3543

    Article  Google Scholar 

  33. Arao Y, Mizuno Y, Araki K, Kubouchi M (2016) Mass production of high-aspect-ratio few-layer-graphene by high-speed laminar flow. Carbon 102:330–338

    Article  Google Scholar 

  34. Liu L, Barber AH, Nuriel S, Wagner HD (2005) Mechanical properties of functionalized single-walled carbon-nanotube/poly (vinyl alcohol) nanocomposites. Adv Funct Mater 15(6):975–980

    Article  Google Scholar 

  35. Li Y, Yang T, Yu T, Zheng L, Liao K (2011) Synergistic effect of hybrid carbon nantube–graphene oxide as a nanofiller in enhancing the mechanical properties of PVA composites. J Mater Chem 21(29):10844–10851

    Article  Google Scholar 

  36. Morimune S, Kotera M, Nishino T, Goto K, Hata K (2011) Poly (vinyl alcohol) nanocomposites with nanodiamond. Macromolecules 44(11):4415–4421

    Article  ADS  Google Scholar 

  37. Paiva MC, Zhou B, Fernando KAS, Lin Y, Kennedy JM, Sun YP (2004) Mechanical and morphological characterization of polymer–carbon nanocomposites from functionalized carbon nanotubes. Carbon 42(14):2849–2854

    Article  Google Scholar 

  38. Wang Y, Shi Z, Yin J (2010) Unzipped multiwalled carbon nanotubes for mechanical reinforcement of polymer composites. J Phys Chem C 114(46):19621–19628

    Article  Google Scholar 

  39. Chen W, Tao X, Xue P, Cheng X (2005) Enhanced mechanical properties and morphological characterizations of poly (vinyl alcohol)–carbon nanotube composite films. Appl Surf Sci 252(5):1404–1409

    Article  ADS  Google Scholar 

  40. Manna K, Srivastava SK, Mittal V (2016) Role of enhanced hydrogen bonding of selectively reduced graphite oxide in fabrication of poly (vinyl alcohol) nanocomposites in water as EMI shielding material. J Phys Chem C 120(30):17011–17023

    Article  Google Scholar 

  41. Du FP, Ye EZ, Yang W, Shen TH, Tang CY, Xie XL, Zhou XP, Law WC (2015) Electroactive shape memory polymer based on optimized multi-walled carbon nanotubes/polyvinyl alcohol nanocomposites. Compost B Eng 68:170–175

    Article  Google Scholar 

  42. Salavagione HJ, Gomez MA, Martinez G (2009) Polymeric modification of graphene through esterification of graphite oxide and poly (vinyl alcohol). Macromolecules 42(17):6331–6334

    Article  ADS  Google Scholar 

  43. Miaudet P, Derré A, Maugey M, Zakri C, Piccione PM, Inoubli R, Poulin P (2007) Shape and temperature memory of nanocomposites with broadened glass transition. Science 318(5854):1294–1296

    Article  ADS  Google Scholar 

  44. Leitão A, Silva J, Dourado F, Gama M (2013) Production and characterization of a new bacterial cellulose/poly (vinyl alcohol) nanocomposite. Materials 6(5):1956–1966

    Article  ADS  Google Scholar 

  45. Qiao R, Deng H, Putz KW, Brinson LC (2011) Effect of particle agglomeration and interphase on the glass transition temperature of polymer nanocomposites. J Polym Sci, Part B: Polym Phys 49(10):740–748

    Article  ADS  Google Scholar 

  46. Peng Z, Kong LX (2007) A thermal degradation mechanism of polyvinyl alcohol/silica nanocomposites. Polym Degrad Stab 92(6):1061–1071

    Article  Google Scholar 

  47. Panaitescu DM, Frone AN, Nicolae C (2013) Micro-and nano-mechanical characterization of polyamide 11 and its composites containing cellulose nanofibers. Eur Polym J 49(12):3857–3866

    Article  Google Scholar 

  48. Voss A, Stark RW, Dietz C (2014) Surface versus volume properties on the nanoscale: elastomeric polypropylene. Macromolecules 47(15):5236–5245

    Article  ADS  Google Scholar 

  49. Pakzad A, Simonsen J, Yassar RS (2012) Gradient of nanomechanical properties in the interphase of cellulose nanocrystal composites. Compos Sci Technol 72(2):314–319

    Article  Google Scholar 

  50. Mishra SK, Kannan S (2014) Development, mechanical evaluation and surface characteristics of chitosan/polyvinyl alcohol based polymer composite coatings on titanium metal. J Mech Behav Biomed Mater 40:314–324

    Article  Google Scholar 

  51. Gu Y, Li M, Wang J, Zhang Z (2010) Characterization of the interphase in carbon fiber/polymer composites using a nanoscale dynamic mechanical imaging technique. Carbon 48(11):3229–3235

    Article  Google Scholar 

  52. Mousa M, Dong Y (2018) Elastic behavior of nanophases in polyvinyl alcohol (PVA)/bamboo charcoal (BC) nanocomposite films. Front Mater 5:44

    Article  ADS  Google Scholar 

  53. Clifford CA, Seah MP (2005) Quantification issues in the identification of nanoscale regions of homopolymers using modulus measurement via AFM nanoindentation. Appl Surf Sci 252(5):1915–1933

    Article  ADS  Google Scholar 

  54. Syed Asif SA, Wahl KJ, Colton RJ, Warren OL (2001) Quantitative imaging of nanoscale mechanical properties using hybrid nanoindentation and force modulation. J Appl Phys 90(3):1192–1200

    Article  ADS  Google Scholar 

  55. Hall EO (1951) The deformation and ageing of mild steel: III discussion of results. Proc Phys Soc B 64(9):747

    Article  ADS  Google Scholar 

  56. Song K, Zhang Y, Minus ML (2015) Polymer interphase self-reinforcement and strengthening mechanisms in low-loaded nanocomposite fibers. Macromol Chem Phys 216(12):1313–1320

    Article  Google Scholar 

  57. Hakalahti M, Mautner A, Johansson LS, Hänninen T, Setälä H, Kontturi E, Bismarck A, Tammelin T (2016) Direct interfacial modification of nanocellulose films for thermoresponsive membrane templates. ACS Appl Mater Interfaces 8(5):2923–2927

    Article  Google Scholar 

  58. Liu M, Zhou C, Dong B, Wu Z, Wang L, Yu S, Gao C (2014) Enhancing the permselectivity of thin-film composite poly (vinyl alcohol)(PVA) nanofiltration membrane by incorporating poly (sodium-p-styrene-sulfonate)(PSSNa). J Membrane Sci 463:173–182

    Article  Google Scholar 

  59. Humood M, Qin S, Song Y, Polychronopoulou K, Zhang Y, Grunlan JC, Polycarpou AA (2016) Influence of graphene reduction and polymer cross-linking on improving the interfacial properties of multilayer thin films. ACS Appl Mater Interfaces 9(1):1107–1118

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Mohanad Mousa .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mousa, M., Dong, Y. (2021). PVA/BC Bionancomposite Films with Particle Size Effect. In: Multiscaled PVA Bionanocomposite Films. Springer, Singapore. https://doi.org/10.1007/978-981-15-8771-9_3

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8771-9_3

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8770-2

  • Online ISBN: 978-981-15-8771-9

  • eBook Packages: Physics and AstronomyPhysics and Astronomy (R0)

Publish with us

Policies and ethics