Skip to main content

Performance Enhancement of STATCOM Integrated Wind Farm for Harmonics Mitigation Using Optimization Techniques

  • Conference paper
  • First Online:
ICT Analysis and Applications

Abstract

Renewable energy generation is growing every day all over the world. This injects the grids with harmonics and increases the total harmonics distortion of the systems. In the other hand, Flexible AC transmission systems (FACTS) are used in the different power systems for the enhancement of the stability of these systems. In this paper, Flexible AC transmission systems (FACTS) shall be used not for the enhancement of the stability of the system as usual, but to mitigate the harmonics of the system and decrease the Total harmonics distortion (THD). The Static Synchronous Compensator (STATCOM) performance is compared using The Harmony Search Optimization Algorithm (HSA) and the Invasive Weed Optimization (IWO) trying to achieve better results. MATLAB/SIMULINK is used to create a power system model of wind generation system and then is used to compare the two techniques.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schwanz, D., & Leborgne, R. C. (2014). Comparative harmonic study of a wind farm: Time vs frequency domain simulation. In International Conference on Harmonics and Quality of Power. Bucharest, Romania: IEEE. https://doi.org/10.1109/ichqp.2014.6842774.

  2. Blooming, T. M., & Carnovale, D. J. (2006). Application of IEEE STD 519–1992 harmonic limits. In Pulp and Paper Industry Technical Conference, (pp. 1–9). IEEE. https://doi.org/10.1109/papcon.2006.1673767.

  3. Machowski, J., Bialek, J. W., & Bumby, J. R. (2020). Power System Dynamics–Stability and Control. Wiley.

    Google Scholar 

  4. Sookananta, B., Galloway, S., Burt, G. M., & McDonald, J. R. (2006). The placement of FACTs devices in modern electrical network. In proceedings of the 41st international universities power engineering conference, newcastle-upon-tyne. UK: IEEE. https://doi.org/10.1109/upec.2006.367585.

  5. Ren, H., Watts, D., Mi, Z., & Lu, J. (2009). A review of facts’ practical consideration and economic evaluation. In Asia-Pacific Power and Energy Engineering Conference. Wuhan, China: IEEE. https://doi.org/10.1109/appeec.2009.4918115.

  6. Kusko, A., & Thompson, M. T. (2007). Power quality in electrical system (3rd ed.). McGraw-Hill.

    Google Scholar 

  7. Martínez, E. B., & Camacho, C. Á. (2017). Technical comparison of FACTs controllers in parallel connection. Journal of Applied Resources Technology, 15, 36–44. https://doi.org/10.1016/j.jart.2017.01.001.

    Article  Google Scholar 

  8. Kumar, G. V. N., & Chowdary, D. D. (2008). DVR with sliding mode control to alleviate voltage sags on a distribution system for three phase short circuit fault. In IEEE Region 10 Colloquium and the Third International Conference on Industrial and Information Systems, (pp. 1–4). Kharagpur, India. https://doi.org/10.1109/iciinfs.2008.4798344.

  9. Tümay, M., Teke, A., Bayındır, K. Ç., & Cuma, M. U. (2002) Simulation and modeling of a dynamic voltage restorer. (Vol. 3, pp. 31-35). Adana, Turkey.

    Google Scholar 

  10. Dhaked, D. K., & Lalwani, M. (2017). A review paper on a D-FACTs controller: Enhanced power flow controller. International Journal of Advanced Engineering Technology, 10, 84–92.

    Google Scholar 

  11. Johal, H., & Divan, D. (2007). Design considerations for series-connected distributed FACTs converters. IEEE Transactions on Industry Applications, 43, 1609–1618.

    Article  Google Scholar 

  12. Kalair, A., Abas, N., Kalair, A. R., Saleem, Z., & Khan, N. (2017). Review of harmonic analysis, modeling and mitigation techniques. Renewable and Sustainable Energy Reviews, 78, 1152–1187.

    Article  Google Scholar 

  13. Omar, R., & Rahim, N. A. (2009). Mitigation of voltage sags/swells using dynamic voltage restorer (DVR). Journal of Engineering in Applied Science, 4, 26–29.

    Google Scholar 

  14. Velamuri, S., & Sreejith, S. (2017). Power flow analysis incorporating renewable energy sources and FACTs devices. International Journal of Renewable Energy Research, 7, 452–458.

    Google Scholar 

  15. Ghosh, A., & Ledwich, G. (2002). Power quality enhancement using custom power devices. US: Springer. https://doi.org/10.1007/978-1-4615-1153-3.

  16. Hingorani, N. G., & Gyugy, L. I. (1999). Understanding FACTs: Concepts and Technology of Flexible AC Transmission Systems. Wiley-IEEE Press.

    Google Scholar 

  17. Fardanesh, B., Shperling, B., Uzunovic, E., & Zelingher, S. (2000). Multi-converter FACTs devices: The generalized unified power flow controller (GUPFC). Power Engineering Society Summer Meeting, IEEE, 2, 1020–1025. https://doi.org/10.1109/PESS.2000.867513.

    Article  Google Scholar 

  18. Wang, F., Duarte, J. L., Hendrix, M. A. M., & Ribeiro, P. F. (2011). Modeling and analysis of grid harmonic distortion impact of aggregated DG inverters. IEEE Transactions on Power Electronics, 26, 786–797.

    Article  Google Scholar 

  19. Powell, R. (1966). The design of capacitor components of large high voltage AC filter networks. In IEE High Voltage D.C. Transmission, (pp. 284–86). Manchester, UK.

    Google Scholar 

  20. Noroozian, M., & Taylor, C. W. (2003). Benefits of SVC and STATCOM for electric utility application. In IEEE PES Transmission and Distribution Conference and Exposition, (pp. 192–99). USA: Dallas, TX. https://doi.org/10.1109/tdc.2003.1335111.

  21. Sharaf, A. M. (1982). Harmonic interference from distribution systems. IEEE Transactions on Power Apparatus and Systems, 3, 2975–2981. https://doi.org/10.1109/TPAS.1982.317626.

    Article  Google Scholar 

  22. Majstrovic, M. (2003). FACTs-based reactive power compensation of wind energy conversion system. In IEEE Power Tech Conference Proceedings, (pp. 41–8). Bologna.

    Google Scholar 

  23. Sharaf, A. M., & Gandoman, F. H. (2014). A flexible FACTs based Scheme for smart grids PV-battery storage systems. International Journal of Distributed Energy Rescue, 10, 261–271.

    Google Scholar 

  24. Sharaf, A. M., & Gandoman, F. H. (2015). A robust FACTs PV-smart grid interface scheme for efficient energy utilization. International Journal of Power Energy Converters., 6, 344–358. https://doi.org/10.1504/IJPEC.2015.073614.

    Article  Google Scholar 

  25. Sharaf, A. M., & Khaki, B. (2012). FACTs based switched capacitor compensation scheme for smart grid applications. In International Symposium on Innovations in Intelligent Systems and Applications, (pp. 1–5). Trabzon, Turkey: IEEE Xplore.

    Google Scholar 

  26. Taufik, A. (2013). Search algorithms for engineering optimization. In Technical Open, Chapter 8. 13. https://doi.org/10.5772/45841.

  27. Geem, Z. W., Kim, J. H., & Loganathan, G. V. (2001). A new heuristic optimization algorithm: Harmony search. Simulation., 76, 60–68. https://doi.org/10.1177/003754970107600201.

    Article  Google Scholar 

  28. Jayabarathi, T., Yazdani, A., & Ramesh, V. (2012). Application of the invasive weed optimization algorithm to economic dispatch problems. Frontiers Energy, 6(2012), 255–259.

    Article  Google Scholar 

  29. Castillo, C. A., Conde, A., & Shih, M. Y. (2018). Improvement of non-standardized directional over current relay coordination by invasive weed optimization. Electric Power Systems Research, 157, 48–58. https://doi.org/10.1016/j.epsr.2017.11.014.

    Article  Google Scholar 

  30. Mehrabian, A. R., & Lucas, C. (2006). A novel numerical optimization algorithm inspired from weed colonization. Ecological Informatics, 1, 355–366. https://doi.org/10.1016/j.ecoinf.2006.07.003.

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Sachin Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Hamdy, M., Attia, M.A., Abdelaziz, A.Y., Kumar, S., Sarita, K., Saket, R.K. (2021). Performance Enhancement of STATCOM Integrated Wind Farm for Harmonics Mitigation Using Optimization Techniques. In: Fong, S., Dey, N., Joshi, A. (eds) ICT Analysis and Applications. Lecture Notes in Networks and Systems, vol 154. Springer, Singapore. https://doi.org/10.1007/978-981-15-8354-4_50

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8354-4_50

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8353-7

  • Online ISBN: 978-981-15-8354-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics