Skip to main content

Finite Deformation of a Dielectric Cylindrical Actuator: A Continuum Mechanics Approach

  • Conference paper
  • First Online:
Recent Advances in Computational Mechanics and Simulations

Abstract

In current scenario, research in smart material deformations introduces a new classical continuum mechanics-based deformation approach that have enough potential to make a bold move from the conventional deformation approaches to a newer one. In line with that, the present work is concerned with the finite deformation modeling of a dielectric cylindrical actuator (DCA) with compliant electrodes. Herein, a common usage of DCA is to realize simultaneous axial and radial displacement with an electric field application across the thickness of the cylinder. Accordingly, we first presented an unified classical continuum mechanics-based approach to model the finite deformation of an incompressible isotropic electro-elastic cylindrical actuator under an applied electric field. Next, we formulate the constitutive relationships following the second law of thermodynamics with an amended form of energy function. This amended energy function successfully resolved the difficulty in the physical interpretation of Maxwell stress tensor exists in the literature under large deformations. In addition, we also propose a new energy density function for a class of an incompressible isotropic electro-elastic material. Further, we obtain a finite electro-elastic deformation model for a dielectric cylindrical actuator (DCA). Finally, we validated the obtained electro-elastic deformation model with their corresponding experimental data existing in the literature.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bustamante, R., Ogden, R.: Universal relations for nonlinear electroelastic solids. Acta Mechanica 182(1), 125–140 (2006)

    Article  Google Scholar 

  2. Bustamante, R., Dorfmann, A., Ogden, R.: On electric body forces and maxwell stresses in nonlinearly electroelastic solids. Int. J. Eng. Sci. 47(11), 1131–1141 (2009)

    Article  MathSciNet  Google Scholar 

  3. Carpi, F., De Rossi, D.: Dielectric elastomer cylindrical actuators: electromechanical modelling and experimental evaluation. Mater. Sci. Eng. C 24(4), 555–562 (2004)

    Article  Google Scholar 

  4. Choi, H.S., Park, I.H., Moon, W.K.: On the physical meaning of maxwell stress tensor. Trans. Korean Inst. Electr. Eng. 58(4), 725–734 (2009)

    Google Scholar 

  5. Damjanovic, D., Newnham, R.: Electrostrictive and piezoelectric materials for actuator applications. J. Intell. Mater. Syst. Struct. 3(2), 190–208 (1992)

    Article  Google Scholar 

  6. Dorfmann, L., Ogden, R.W.: Nonlinear Theory of Electroelastic and Magnetoelastic Interactions. Springer (2016)

    Google Scholar 

  7. Dorfmann, A., Ogden, R.: Nonlinear electroelasticity. Acta Mechanica 174(3–4), 167–183 (2005)

    Article  Google Scholar 

  8. Dorfmann, A., Ogden, R.: Nonlinear electroelastic deformations. J. Elast. 82(2), 99–127 (2006)

    Article  MathSciNet  Google Scholar 

  9. Eringen, A.C., Maugin, G.A.: Electrodynamics of Continua I: Foundations and Solid Media. Springer Science & Business Media (2012)

    Google Scholar 

  10. Kovetz, A.: Electromagnetic Theory. Oxford University Press, Oxford (2000)

    MATH  Google Scholar 

  11. Kumar, D., Sarangi, S.: Dynamic modeling of a dielectric elastomeric spherical actuator: an energy-based approach. Soft Mater. (2019). https://doi.org/10.1080/1539445X.2019.1616557

  12. Kumar, D., Sarangi, S.: Electro-mechanical instability modelling in elastomeric actuators: a second law of thermodynamics-based approach. Soft Mater. 1–13 (2019)

    Google Scholar 

  13. Kumar, D., Sarangi, S.: Instability analysis of an electro-magneto-elastic actuator: a continuum mechanics approach. AIP Adv. 8(11), 115314 (2018)

    Google Scholar 

  14. Kumar, D., Sarangi, S.: Data on the viscoelastic behavior of neoprene rubber. Data Brief 21, 943–947 (2018)

    Article  Google Scholar 

  15. Kumar, D., Sarangi, S.: Electro-magnetostriction under large deformation: modeling with experimental validation. Mech. Mater. 128(1), 1–10 (2019)

    Article  Google Scholar 

  16. Lateefi, M.M., Kumar, D., Sarangi, S.: Stability analysis of a hyperelastic tube under large deformation. In: 2018 International Conference on Automation and Computational Engineering (ICACE), pp. 234–239. IEEE (2018)

    Google Scholar 

  17. Liu, Y., Ren, K.L., Hofmann, H.F., Zhang, Q.: Investigation of electrostrictive polymers for energy harvesting. IEEE Trans. Ultrason. Ferroelectr. Frequency Control 52(12), 2411–2417 (2005)

    Google Scholar 

  18. Melnikov, A., Ogden, R.W.: Finite deformations of an electroelastic circular cylindrical tube. Zeitschrift für angewandte Mathematik und Physik 67(6), 140 (2016)

    Article  MathSciNet  Google Scholar 

  19. Pao, Y.H.: Electromagnetic forces in deformable continua. In: Mechanics Today, vol. 4, pp. 209–305. NSF-supported research (A78-35706 14-70). Pergamon Press, Inc., New York (1978)

    Google Scholar 

  20. Pelrine, R.E., Kornbluh, R.D., Joseph, J.P.: Electrostriction of polymer dielectrics with compliant electrodes as a means of actuation. Sens. Actuators A: Phys. 64(1), 77–85 (1998)

    Article  Google Scholar 

  21. Rinaldi, C., Brenner, H.: Body versus surface forces in continuum mechanics: is the Maxwell stress tensor a physically objective cauchy stress? Phys. Rev. E 65(3), 036615 (2002)

    Article  MathSciNet  Google Scholar 

  22. Stratton, J.A.: Electromagnetic Theory. Wiley (2007)

    Google Scholar 

  23. Toupin, R.A.: The elastic dielectric. J. Ration. Mech. Anal. 5(6), 849–915 (1956)

    MathSciNet  MATH  Google Scholar 

  24. Volokh, K.: On electromechanical coupling in elastomers. J. Appl. Mech. 79(4), 044507 (2012)

    Article  Google Scholar 

  25. Wissler, M., Mazza, E.: Modeling of a pre-strained circular actuator made of dielectric elastomers. Sens. Actuators A: Phys. 120(1), 184–192 (2005)

    Article  Google Scholar 

  26. Wissler, M., Mazza, E.: Electromechanical coupling in dielectric elastomer actuators. Sens. Actuators A: Phys. 138(2), 384–393 (2007)

    Article  Google Scholar 

  27. Xia, J., Ying, Y., Foulger, S.H.: Electric-field-induced rejection-wavelength tuning of photonic-bandgap composites. Adv. Mater. 17(20), 2463–2467 (2005)

    Article  Google Scholar 

  28. Zhao, X., Suo, Z.: Electrostriction in elastic dielectrics undergoing large deformation. J. Appl. Phys. 104(12), 123530 (2008)

    Article  Google Scholar 

  29. Zhao, X., Hong, W., Suo, Z.: Electromechanical hysteresis and coexistent states in dielectric elastomers. Phys. Rev. B 76(13), 134113 (2007)

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Deepak Kumar .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Kumar, D., Behera, S.K., Sarangi, S. (2021). Finite Deformation of a Dielectric Cylindrical Actuator: A Continuum Mechanics Approach. In: Saha, S.K., Mukherjee, M. (eds) Recent Advances in Computational Mechanics and Simulations. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-8315-5_34

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8315-5_34

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8314-8

  • Online ISBN: 978-981-15-8315-5

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics