Skip to main content

Genetic Enhancement Perspectives and Prospects for Grain Nutrients Density

  • Chapter
  • First Online:
Sorghum in the 21st Century: Food – Fodder – Feed – Fuel for a Rapidly Changing World

Abstract

Diet-induced micronutrient malnutrition continues to be a major challenge globally, especially in the developing world. With the ever-increasing population, it becomes a daunting task to feed millions of mouths with nutritious food. It is time to reorient agricultural systems to produce quality food to supply the calorie and nutrient requirements needed by the human body. Biofortification is the process of improving micronutrients density by genetic means. It is cheaper and sustainable and complements well with the nutrient supplementation and fortification—the short-term strategies that are currently deployed to address the micronutrient malnutrition. Sorghum is one of the important food crops globally, adapted to semi-arid tropics, and there is increased awareness on its nutritional importance. Further, there is great opportunity to improve sorghum for nutritional quality. This chapter deals about the genetic enhancement perspectives and prospects for improving the nutritional quality with main emphasis on grain micronutrient density in sorghum.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 199.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Anuradha K, Prakash B, Ramu P, Shah T, Kumar AA, Deshpande SP (2013) In silico identification of candidate genes involved for grain Fe and Zn concentration in sorghum using reported cereals gene homologs. In: Rakshit S et al (eds) Compendium of papers & abstracts: global consultation on millets promotion for health & nutritional security, 18–20 December, 2013. Society for Millets Research, Directorate of Sorghum Research, Hyderabad, pp 10–12

    Google Scholar 

  • Anuradha K, Phuke R, Hariprasanna K, Mehtre SP, Rathore A, Sunita G, Srivastava RK, Das R, Prakash AB, Radhika K, Hash CT, Reddy BVS, Patil JV, Farzana J, Shashikanth D, Jayakumar J, Gaddameedi A, Subhasini V, Deshpande SP, Kumar AA (2019) Identification of QTLs and candidate genes for high grain Fe and Zn concentration in sorghum [Sorghum bicolor (L.) Moench]. J Cereal Sci 90:102850. https://doi.org/10.1016/j.jcs.2019.102850

    Article  CAS  Google Scholar 

  • Kumar AA, Reddy BVS, Ramaiah B, Sanjana Reddy P, Sahrawat KL, Upadhyaya HD (2009) Genetic variability and plant character association of grain Fe and Zn in selected core collections of sorghum germplasm and breeding lines. J SAT Agric Res 7(12):1–4

    Google Scholar 

  • Kumar AA, Reddy BVS, Ramaiah B, Sahrawat KL, Pfeiffer WH (2012) Genetic variability and character association for grain iron and zinc contents in sorghum germplasm accessions and commercial cultivars. Eur J Plant Sci Biotech 6(1):66–70

    Google Scholar 

  • Kumar AA, Anuradha K, Ramaiah B (2013a) Increasing grain Fe and Zn concentration in sorghum: progress and way forward. J SAT Agric Res 11(12):1–5

    Google Scholar 

  • Kumar AA, Reddy BVS, Sahrawat KL (2013b) Biofortification for combating micronutrient malnutrition: identification of commercial sorghum cultivars with high grain iron and zinc contents. Ind J Dryland Agr Res Dev 28(1):95–100

    Google Scholar 

  • Kumar AA, Reddy BVS, Grando S (2015) Global millets improvement and its relevance to India and developing world. In: Tonapi VA, Dayakar Rao B, Patil JV (eds) Millets: promotion for food, feed, fodder, nutritional and environment security, society for millets research. ICAR-Indian Institute of Millets Research, Hyderabad, pp 154–172

    Google Scholar 

  • Badigannavar A, Girish G, Ramachandran V, Ganapathi TR (2016) Genotypic variation for seed protein and mineral content among post-rainy season-grown sorghum genotypes. Crop J 4(1):61–67

    Article  Google Scholar 

  • Belton PS, Delgadillo I, Halford NG, Shewry PR (2006) Kafirin structure and functionality. J Cereal Sci 44:272–286

    Article  CAS  Google Scholar 

  • Beta T, Rooney LW, Marobatsanga LT, Taylor JRN (1999) Phenolic compounds and kernel characteristics of Zimbabwean sorghums. J Sci Food Agric 79:1003–1010

    Article  CAS  Google Scholar 

  • Bouis HE, Graham RD, Welch RM (2000) The Consultative Group on International Agricultural Research (CGIAR) micronutrients project: justification and objectives. Food Nutr Bull 21(4):374–381

    Article  Google Scholar 

  • Boyles RE, Pfeiffer BK, Cooper EA, Rauh BL, Zielinski KJ, Myers MT, Brenton Z, Rooney WL, Kresovich S (2017) Genetic dissection of sorghum grain quality traits using diverse and segregating populations. Theor Appl Genet 130(4):697–716

    Article  PubMed  Google Scholar 

  • Brinch-Pedersen H, Hatzack F, Stöger E, Arcalis E, Pontopidan K, Holm PB (2006) Heat-stable phytases in transgenic wheat (Triticum aestivum L.): deposition pattern, thermostability, and phytate hydrolysis. J Agric Food Chem 54(13):4624–4632

    Article  CAS  PubMed  Google Scholar 

  • Che P, Zhao ZY, Glassman K, Dolde D, Hu TX, Jones TJ, Gruis DF, Obukosia S, Wambugu F, Albertsen MC (2016) Elevated vitamin E content improves all-trans β-carotene accumulation and stability in biofortified sorghum. Proc Natl Acad Sci 113(39):11040–11045. https://doi.org/10.1073/pnas.1605689113

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Dargo F, Shiferaw T (2017) Participatory varietal selection of bread wheat cultivars (Triticum aestivum L.) for moisture stress environment of Somali Regional State of Ethiopia. J Biol Agric Healthc 7(5):58–67

    Google Scholar 

  • Dykes L, Rooney LW, Waniska RD, Rooney WL (2005) Phenolic compounds and antioxidant activity of sorghum grains of varying genotypes. J Agric Food Chem 53(17):6813–6818

    Article  CAS  PubMed  Google Scholar 

  • Earp CF, McDonough CM, Rooney LW (2004) Microscopy of pericarp development in the caryopsis of Sorghum bicolor (L.) Moench. J Cereal Sci 39:21–27

    Article  Google Scholar 

  • Elkonin L, Italyanskaya J, Panin V (2018) Genetic modification of sorghum for improved nutritional value: state of the problem and current approaches. J Investig Genomics 5(1):39–48

    Google Scholar 

  • Engle-Stone R, Stewart CP, Vosti SA, Adams KP (2017) Preventative nutrition interventions. Haiti Priorise, Copenhagen Consensus Center, Copenhagen. 60 p

    Google Scholar 

  • Feil B, Moser SB, Jampatong S, Stamp P (2005) Mineral composition of the grains of tropical maize varieties as affected by pre-anthesis drought and rate of nitrogen fertilization. Crop Sci 45(2):516–523

    Article  CAS  Google Scholar 

  • Figueiredo LF, Sine B, Chantereau J, Mestres C, Fliedel G, Rami JF, Glaszmann JC, Deu M, Courtois B (2010) Variability of grain quality in sorghum: association with polymorphism in Sh2, Bt2, SssI, Ae1, Wx and O2. Theor Appl Genet 121(6):1171–1185

    Article  PubMed  CAS  Google Scholar 

  • Hahn DH, Rooney LW, Earp CF (1984) Tannins and phenols of sorghum. Cereal Foods World 29:776–779

    CAS  Google Scholar 

  • Hamaker BR, Bugusu BA (2003) Overview: sorghum proteins and food quality. Pretoria, South Africa. Paper presented at the Workshop on the proteins of sorghum and millets: enhancing nutritional and functional properties for Africa. http://www.afripro.org.uk/papers/Paper08Hamaker.pdf

  • Harborne JB, Williams CA (2000) Advances in flavonoids research since 1992. Phytochemistry 55:481–504

    Article  CAS  PubMed  Google Scholar 

  • Hariprasanna K, Agte V, Prabhakar PJV (2012) Genotype × environment interactions for grain micronutrient contents in sorghum [Sorghum bicolor (L.) Moench]. J Genet Breed 72(4):429–434

    CAS  Google Scholar 

  • Hariprasanna K, Agte V, Patil JV (2014a) Genetic control and heterosis for grain iron and zinc contents in sorghum [Sorghum bicolor (L.) Moench]. J Genet Breed 74(4S):638–643

    Google Scholar 

  • Hariprasanna K, Agte V, Elangovan M, Patil JV (2014b) Genetic variability for grain iron and zinc content in cultivars, breeding lines and selected germplasm accessions of sorghum [Sorghum bicolor (L.) Moench]. J Genet Breed 74(1):42–49

    CAS  Google Scholar 

  • Hariprasanna K, Agte V, Elangovan M, Gite S, Kishore A (2015) Anti-nutritional factors and antioxidant capacity in selected genotypes of sorghum [Sorghum bicolor L. (Moench)]. Int J Agric Sci 7(8):620–625

    CAS  Google Scholar 

  • Hariprasanna K, Agte V, Elangovan M, Gite S, Kishore A (2016) Genetic variability for cyanogen and trypsin inhibitor contents in sorghum (Sorghum bicolor (L.) Moench). Elect J Plant Breed 7(4):1098–1104

    Article  Google Scholar 

  • Hulse JH, Laing EM, Pearson OE (1980) Sorghum and the millets: their composition and nutritive value. Academic Press, New York, NY. 997 p

    Google Scholar 

  • ICRISAT (2019). http://oar.icrisat.org/10924/1/SF18_case_study_bioavailable_ micronutrients.pdf. Accessed 3 Apr 2019

  • Jambunathan R, Subramanian V (1987) Grain quality and utilization of sorghum and pearl millet. In: Biotechnology in tropical crop improvement. Proceedings, International Biotechnology Workshop, ICRISAT, Patancheru, India, 12–15 January, 1987

    Google Scholar 

  • Kriegshauser TD, Tuinstra MR, Hancock JD (2006) Variation in nutritional value of sorghum hybrids with contrasting seed weight characteristics and comparisons with maize in broiler chicks. Crop Sci 46(2):695–699

    Article  CAS  Google Scholar 

  • Li A, Jia S, Yobi A, Ge Z, Sato SJ, Zhang C, Angelovici R, Clemente TE, Holding DR (2018) Editing of an Alpha-Kafirin gene family increases, digestibility and protein quality in sorghum. Plant Physiol 177:1425–1438

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lindsay J (2010) Sorghum: an ancient, healthy, and nutritious old world cereal. INTSORMIL Scientific Publications, University of Nebraska, Lincoln, NE. 28 p

    Google Scholar 

  • Longvah T, Ananthan R, Bhaskarachary K, Venkaiah K (2017) Indian food composition tables 2017. National Institute of Nutrition, Hyderabad. 505 p

    Google Scholar 

  • Lott JNA (1984) Accumulation of seed reserves of phosphorus and other minerals. In: Murray DR (ed) Seed physiology, vol. 1. Development. Academic Press, London, pp 139–166

    Google Scholar 

  • Makokha AO, Oniang’o RK, Njoroge SM, Kamar OK (2002) Effect of traditional fermentation and malting on phytic acid and mineral availability from sorghum (Sorghum bicolor) and finger millet (Eleusine coracana) grain varieties grown in Kenya. Food Nutr Bull 23(3S):241–245

    Article  PubMed  Google Scholar 

  • Ming R, Liu SC, Moore PH, Irvine JE, Paterson AH (2001) QTL analysis in a complex autopolyploid: genetic control of sugar content in sugarcane. Genome Res 11:2075–2084

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Murthy D, Rao KM, Upendra A (2006) Effect of organically bound micronutrients on growth and yield of rice. J Eco Friend Agric 3:86–87

    Google Scholar 

  • Nugent AP (2005) Health properties of resistant starch. Nutr Bull 30(1):27–54

    Article  Google Scholar 

  • Paterson AH, Bowers JE, Bruggmann R (2009) The sorghum bicolor genome and the diversification of grasses. Nature 457:551–556

    Article  CAS  PubMed  Google Scholar 

  • Phuke RM, Anuradha K, Radhika K, Jabeen F, Anuradha G, Ramesh T, Das RR (2017) Genetic variability, genotype × environment interaction, correlation, and GGE biplot analysis for grain iron and zinc concentration and other agronomic traits in RIL population of sorghum [Sorghum bicolor (L.) Moench]. Front Plant Sci 8:712

    Article  PubMed  PubMed Central  Google Scholar 

  • Prasad MP, Rao BD, Kalpana K, Rao MV, Patil JV (2015) Glycaemic index and glycaemic load of sorghum products. J Sci Food Agric 95(8):1626–1630

    Article  CAS  PubMed  Google Scholar 

  • Rao S, Santhakumar A, Chinkwo K, Wu G, Johnson S, Blanchard C (2018) Characterization of phenolic compounds and antioxidant activity in sorghum grains. J Cereal Sci 84:103–111

    Article  CAS  Google Scholar 

  • Reddy BVS, Ramesh S, Longvah T (2005) Prospects of breeding for micronutrients and carotene-dense sorghums. Int Sorg Mill Newsl 46:10–14

    Google Scholar 

  • Rhodes DH, Hoffmann L, Rooney WL, Herald TJ, Bean S, Boyles R, Brenton ZW, Kresovich S (2017) Genetic architecture of kernel composition in global sorghum germplasm. BMC Genomics 18(1):15

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Saleh AS, Zhang Q, Chen J, Shen Q (2013) Millet grains: nutritional quality, processing, and potential health benefits. Compr Rev Food Sci Food Saf 12(3):281–295

    Article  CAS  Google Scholar 

  • Sanjana Reddy P, Reddy VS, Kumar AA, Ramesh S, Sahrawat KL, Venkateswara Rao P (2010) Association of grain Fe and Zn contents with agronomic traits in sorghum. Indian J Plant Genet Res 23(3):280–284

    Google Scholar 

  • Shewayrga H, Sopade PA, Jordan DR, Godwin ID (2012) Characterisation of grain quality in diverse sorghum germplasm using a Rapid Visco-Analyzer and near infrared reflectance spectroscopy. J Sci Food Agric 92(7):1402–1410

    Article  CAS  PubMed  Google Scholar 

  • Shull JM, Watterson JJ, Kirleis AW (1992) Purification and immune cytochemical localization of kafirins in Sorghum bicolor (L. Moench) endosperm. Protoplasma 171:64–74

    Article  CAS  Google Scholar 

  • Singh R, Axtell JD (1973) High lysine mutant gene (hl) that improves protein quality and biological value of grain Sorghum 1. Crop Sci 13:535–539

    Article  CAS  Google Scholar 

  • Singh AK, Singh R, Subramani R, Kumar R, Wankhede DP (2016) Molecular approaches to understand nutritional potential of coarse cereals. Curr Genomics 17(3):177–192

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Stevens GA, Finucane MM, De-Regil LM, Paciorek CJ, Flaxman SR, Branca F, Peña-Rosas JP, Bhutta ZA, Ezzati M (2013) Nutrition Impact Model Study Group - Global, regional, and national trends in haemoglobin concentration and prevalence of total and severe anaemia in children and pregnant and non-pregnant women for 1995–2011: a systematic analysis of population-representative data. Lancet Glob Health 1:e16–e25

    Article  PubMed  PubMed Central  Google Scholar 

  • Suganya Devi P, Kumar MS, Das SM (2012) DNA damage protecting activity and free radical scavenging activity of anthocyanins from red Sorghum (Sorghum bicolor) Bran. Biotech Res Int 2012:258787. https://doi.org/10.1155/2012/258787

    Article  CAS  Google Scholar 

  • Sukumaran S, Xiang W, Bean SR, Pedersen JF, Kresovich S, Tuinstra MR, Yu J (2012) Association mapping for grain quality in a diverse sorghum collection. Plant Genome 5(3):126–135

    Article  CAS  Google Scholar 

  • Taylor JRN, Emmambux MN (2010) Developments in our understanding of sorghum polysaccharides and their health benefits. Cereal Chem 87(4):263–271

    Article  CAS  Google Scholar 

  • Taylor JRN, Novellie L, Liebenberg NW (1984) Sorghum protein body composition and ultrastructure. Cereal Chem 61:69–73

    CAS  Google Scholar 

  • Venkateswarlu R, Hariprasanna K, Niharika G, Ratnavathi CV, Tonapi VA (2018) Iron and zinc concentration is strongly correlated with protein content in Sorghum grains. In: Second International Conference “Aligning Food Systems for Healthy Diets and Improved Nutrition”, 11–13 November 2018. National Institute of Nutrition, Hyderabad. Abstracts. 164 pp

    Google Scholar 

  • Vietor DM, Miller FR (1990) Assimilation, partitioning, and nonstructural carbohydrates in sweet compared with grain sorghum. Crop Sci 30(5):1109–1115

    Article  CAS  Google Scholar 

  • Wehmeyer AS (1969) Composition of kafir corn (including hybrids). Report C Chem 220. Council for Scientific and Industrial Research, Pretoria

    Google Scholar 

  • Wessells KR, Brown KH (2012) Estimating the global prevalence of zinc deficiency: results based on zinc availability in national food supplies and the prevalence of stunting. PLoS One 7(11):e50568

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  • Wessels I, Haase H, Engelhardt G, Rink L, Uciechowski P (2013) Zinc deficiency induces production of the proinflammatory cytokines IL-1β and TNFα in promyeloid cells via epigenetic and redox-dependent mechanisms. J Nutr Biochem 24(1):289–297

    Article  CAS  PubMed  Google Scholar 

  • Zimmermann MB (2011) The role of iodine in human growth and development. Semin Cell Dev Biol 22:645–652

    Article  CAS  PubMed  Google Scholar 

Download references

Acknowledgements

The authors wish to thank the funding support by HarvestPlus Challenge Program and the Department of Biotechnology, Government of India for carrying out biofortification research. Thanks are also due to CRP—Grain Legumes and Dryland Cereals for partial support for carrying out this work.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ashok Kumar Are .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Are, A.K. et al. (2020). Genetic Enhancement Perspectives and Prospects for Grain Nutrients Density. In: Tonapi, V.A., Talwar, H.S., Are, A.K., Bhat, B.V., Reddy, C.R., Dalton, T.J. (eds) Sorghum in the 21st Century: Food – Fodder – Feed – Fuel for a Rapidly Changing World. Springer, Singapore. https://doi.org/10.1007/978-981-15-8249-3_31

Download citation

Publish with us

Policies and ethics