Skip to main content

Sex Chromosome-Linked Diseases

  • Chapter
  • First Online:
Fetal Morph Functional Diagnosis

Part of the book series: Comprehensive Gynecology and Obstetrics ((CGO))

  • 409 Accesses

Abstract

It is widely accepted that human X and Y chromosomes are differentiated from a pair of autosomes by means of chromosomal inversions or accumulation of linked sex-determining genes. Therefore, the diseases caused by X- and Y-linked genes are not only similar to those caused by autosomes genes, but also gender specific. Some studies on the relative roles of the sex chromosome genes are likely to illuminate the reasons for the expression of some diseases within and between the sexes. Understanding the bases of these gender-based differences is also important for the development of new approaches to disease prevention, diagnosis, and treatment. In this chapter, we overview our current knowledge about the chromosomal, genomic, and single-gene diseases of the sex chromosomes, and discuss the correlation with fetal morphology.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Ross JL, et al. The phenotype of short stature homeobox gene (SHOX) deficiency in childhood: contrasting children with Leri-Weill dyschondrosteosis and Turner syndrome. J Pediatr. 2005;147(4):499–507.

    Article  CAS  PubMed  Google Scholar 

  2. Munns CJ, et al. Expression of SHOX in human fetal and childhood growth plate. J Clin Endocrinol Metab. 2004;89(8):4130–5.

    Article  CAS  PubMed  Google Scholar 

  3. Ambrosetti F, et al. Langer mesomelic dysplasia in early fetuses: two cases and a literature review. Fetal Pediatr Pathol. 2014;33(2):71–83.

    Article  PubMed  Google Scholar 

  4. Nino M, et al. Clinical and molecular analysis of arylsulfatase E in patients with brachytelephalangic chondrodysplasia punctata. Am J Med Genet A. 2008;146A(8):997–1008.

    Article  CAS  PubMed  Google Scholar 

  5. Brunetti-Pierri N, et al. X-linked recessive chondrodysplasia punctata: spectrum of arylsulfatase E gene mutations and expanded clinical variability. Am J Med Genet A. 2003;117A(2):164–8.

    Article  PubMed  Google Scholar 

  6. Carrascosa-Romero MC, et al. X-chromosome-linked ichthyosis associated to epilepsy, hyperactivity, autism and mental retardation, due to the Xp22.31 microdeletion. Rev Neurol. 2012;54(4):241–8.

    PubMed  Google Scholar 

  7. Crane JS, Wu B, Paller AS. Ichthyosis X-Linked. 2020.

    Google Scholar 

  8. Alnaes M, Melle KO. Kallmann syndrome. Tidsskr Nor Laegeforen. 2019;139(17).

    Google Scholar 

  9. de Castro F, Seal R, Maggi R. ANOS1: a unified nomenclature for Kallmann syndrome 1 gene (KAL1) and anosmin-1. Brief Funct Genomics. 2017;16(4):205–10.

    Article  PubMed  Google Scholar 

  10. Whibley A, et al. Deletion of MAOA and MAOB in a male patient causes severe developmental delay, intermittent hypotonia and stereotypical hand movements. Eur J Hum Genet. 2010;18(10):1095–9.

    Article  PubMed  PubMed Central  Google Scholar 

  11. Suarez-Merino B, et al. Sequence analysis and transcript identification within 1.5 MB of DNA deleted together with the NDP and MAO genes in atypical Norrie disease patients presenting with a profound phenotype. Hum Mutat. 2001;17(6):523.

    Article  CAS  PubMed  Google Scholar 

  12. Rodriguez-Revenga L, et al. Contiguous deletion of the NDP, MAOA, MAOB, and EFHC2 genes in a patient with Norrie disease, severe psychomotor retardation and myoclonic epilepsy. Am J Med Genet A. 2007;143A(9):916–20.

    Article  CAS  PubMed  Google Scholar 

  13. Zhang L, et al. A microdeletion in Xp11.3 accounts for co-segregation of retinitis pigmentosa and mental retardation in a large kindred. Am J Med Genet A. 2006;140(4):349–57.

    Article  PubMed  Google Scholar 

  14. Lugtenberg D, et al. ZNF674: a new Kruppel-associated box-containing zinc-finger gene involved in nonsyndromic X-linked mental retardation. Am J Hum Genet. 2006;78(2):265–78.

    Article  CAS  PubMed  Google Scholar 

  15. Merry DE, et al. Choroideremia and deafness with stapes fixation: a contiguous gene deletion syndrome in Xq21. Am J Hum Genet. 1989;45(4):530–40.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. El-Hattab AW, et al. Clinical characterization of int22h1/int22h2-mediated Xq28 duplication/deletion: new cases and literature review. BMC Med Genet. 2015;16:12.

    Article  PubMed  PubMed Central  Google Scholar 

  17. Giorda R, et al. Complex segmental duplications mediate a recurrent dup(X)(p11.22-p11.23) associated with mental retardation, speech delay, and EEG anomalies in males and females. Am J Hum Genet. 2009;85(3):394–400.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  18. Froyen G, et al. Copy-number gains of HUWE1 due to replication- and recombination-based rearrangements. Am J Hum Genet. 2012;91(2):252–64.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  19. Rodd C, et al. Somatic GPR101 duplication causing X-Linked Acrogigantism (XLAG)-diagnosis and management. J Clin Endocrinol Metab. 2016;101(5):1927–30.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Rio M, et al. Familial interstitial Xq27.3q28 duplication encompassing the FMR1 gene but not the MECP2 gene causes a new syndromic mental retardation condition. Eur J Hum Genet. 2010;18(3):285–90.

    Article  CAS  PubMed  Google Scholar 

  21. Vandewalle J, et al. Dosage-dependent severity of the phenotype in patients with mental retardation due to a recurrent copy-number gain at Xq28 mediated by an unusual recombination. Am J Hum Genet. 2009;85(6):809–22.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  22. El-Hattab AW, et al. Int22h-1/int22h-2-mediated Xq28 rearrangements: intellectual disability associated with duplications and in utero male lethality with deletions. J Med Genet. 2011;48(12):840–50.

    Article  CAS  PubMed  Google Scholar 

  23. Ramocki MB, Tavyev YJ, Peters SU. The MECP2 duplication syndrome. Am J Med Genet A. 2010;152A(5):1079–88.

    Article  PubMed  PubMed Central  Google Scholar 

  24. Turk BR, et al. X-linked adrenoleukodystrophy: pathology, pathophysiology, diagnostic testing, newborn screening, and therapies. Int J Dev Neurosci. 2019;

    Google Scholar 

  25. Vogel BH, et al. Newborn screening for X-linked adrenoleukodystrophy in New York State: diagnostic protocol, surveillance protocol and treatment guidelines. Mol Genet Metab. 2015;114(4):599–603.

    Article  CAS  PubMed  Google Scholar 

  26. Montagna G, et al. Identification of seven novel mutations in ABCD1 by a DHPLC-based assay in Italian patients with X-linked adrenoleukodystrophy. Hum Mutat. 2005;25(2):222.

    Article  PubMed  Google Scholar 

  27. Berger J, Gartner J. X-linked adrenoleukodystrophy: clinical, biochemical and pathogenetic aspects. Biochim Biophys Acta. 2006;1763(12):1721–32.

    Article  CAS  PubMed  Google Scholar 

  28. Schonberger S, et al. Genotype and protein expression after bone marrow transplantation for adrenoleukodystrophy. Arch Neurol. 2007;64(5):651–7.

    Article  PubMed  Google Scholar 

  29. Menkes JH, et al. A sex-linked recessive disorder with retardation of growth, peculiar hair, and focal cerebral and cerebellar degeneration. Pediatrics. 1962;29:764–79.

    CAS  PubMed  Google Scholar 

  30. Rangarh P, Kohli N. Neuroimaging findings in Menkes disease: a rare neurodegenerative disorder. BMJ Case Rep. 2018;2018

    Google Scholar 

  31. Tumer Z, Moller LB. Menkes disease. Eur J Hum Genet. 2010;18(5):511–8.

    Article  PubMed  Google Scholar 

  32. Tumer Z. An overview and update of ATP7A mutations leading to Menkes disease and occipital horn syndrome. Hum Mutat. 2013;34(3):417–29.

    Article  PubMed  Google Scholar 

  33. Bekheirnia MR, et al. Genotype-phenotype correlation in X-linked Alport syndrome. J Am Soc Nephrol. 2010;21(5):876–83.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang Y, et al. Genotype-phenotype correlations in 17 Chinese patients with autosomal recessive Alport syndrome. Am J Med Genet A. 2012;158A(9):2188–93.

    Article  PubMed  Google Scholar 

  35. Flanigan KM. Duchenne and Becker muscular dystrophies. Neurol Clin. 2014;32(3):671–88. viii

    Article  PubMed  Google Scholar 

  36. Esposito G, Carsana A. Metabolic alterations in cardiomyocytes of patients with Duchenne and Becker muscular dystrophies. J Clin Med. 2019;8(12)

    Google Scholar 

  37. Deconinck N, Dan B. Pathophysiology of Duchenne muscular dystrophy: current hypotheses. Pediatr Neurol. 2007;36(1):1–7.

    Article  PubMed  Google Scholar 

  38. Razak KA, Dominick KC, Erickson CA. Developmental studies in fragile X syndrome. J Neurodev Disord. 2020;12(1):13.

    Article  PubMed  PubMed Central  Google Scholar 

  39. Landowska A, et al. Fragile X syndrome and FMR1-dependent diseases – clinical presentation, epidemiology and molecular background. Dev Period Med. 2018;22(1):14–21.

    PubMed  Google Scholar 

  40. Salcedo-Arellano MJ, et al. Fragile X syndrome and associated disorders: clinical aspects and pathology. Neurobiol Dis. 2020;136:104740.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Konkle BA, Huston H, Nakaya FS. Hemophilia A. 1993.

    Google Scholar 

  42. Mansouritorghabeh H. Clinical and laboratory approaches to hemophilia A. Iran J Med Sci. 2015;40(3):194–205.

    PubMed  PubMed Central  Google Scholar 

  43. Aledort L, et al. Factor VIII replacement is still the standard of care in haemophilia A. Blood Transfus. 2019;17(6):479–86.

    PubMed  PubMed Central  Google Scholar 

  44. Bell S, et al. Lesch-Nyhan syndrome: models, theories, and therapies. Mol Syndromol. 2016;7(6):302–11.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  45. Harris JC. Lesch-Nyhan syndrome and its variants: examining the behavioral and neurocognitive phenotype. Curr Opin Psychiatry. 2018;31(2):96–102.

    Article  PubMed  Google Scholar 

  46. Torres RJ, Puig JG. Hypoxanthine-guanine phosophoribosyltransferase (HPRT) deficiency: Lesch-Nyhan syndrome. Orphanet J Rare Dis. 2007;2:48.

    Article  PubMed  PubMed Central  Google Scholar 

  47. Diaz-Parra S, et al. X-linked severe combined immunodeficiency and hepatoblastoma: a case report and review of literature. J Pediatr Hematol Oncol. 2018;40(6):e348–9.

    Article  PubMed  Google Scholar 

  48. Allenspach E, Rawlings DJ, Scharenberg AM. X-linked severe combined immunodeficiency. 1993.

    Google Scholar 

  49. Toriello HV, et al. Oral-facial-digital syndrome type I. 1993.

    Google Scholar 

  50. Macca M, Franco B. The molecular basis of oral-facial-digital syndrome, type 1. Am J Med Genet C Semin Med Genet. 2009;151C(4):318–25.

    Article  CAS  PubMed  Google Scholar 

  51. Beck-Nielsen SS, et al. FGF23 and its role in X-linked hypophosphatemia-related morbidity. Orphanet J Rare Dis. 2019;14(1):58.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Kinoshita Y, Fukumoto S. X-linked hypophosphatemia and FGF23-related hypophosphatemic diseases: prospect for new treatment. Endocr Rev. 2018;39(3):274–91.

    Article  PubMed  Google Scholar 

  53. Lecoq AL, et al. Management of X-linked hypophosphatemia in adults. Metabolism. 2020;103S:154049.

    Article  PubMed  Google Scholar 

  54. Rothenbuhler A, et al. Diagnosis, treatment-monitoring and follow-up of children and adolescents with X-linked hypophosphatemia (XLH). Metabolism. 2020;103S:153892.

    Article  PubMed  Google Scholar 

  55. Yazdani R, et al. The hyper IgM syndromes: epidemiology, pathogenesis, clinical manifestations, diagnosis and management. Clin Immunol. 2019;198:19–30.

    Article  CAS  PubMed  Google Scholar 

  56. Dunn CP, de la Morena MT. X-linked hyper IgM syndrome. 1993.

    Google Scholar 

  57. Groeneweg M, Lankester AC, Bredius RG. From gene to disease; CD40 ligand deficiency as the cause of X-linked hyper-IgM-syndrome. Ned Tijdschr Geneeskd. 2003;147(21):1009–11.

    CAS  PubMed  Google Scholar 

  58. Rawat A, et al. Clinical and molecular features of X-linked hyper IgM syndrome – an experience from North India. Clin Immunol. 2018;195:59–66.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  59. Krausz C, Casamonti E. Spermatogenic failure and the Y chromosome. Hum Genet. 2017;136(5):637–55.

    Article  CAS  PubMed  Google Scholar 

  60. Quintana-Murci L, Fellous M. The human Y chromosome: the biological role of a “functional wasteland”. J Biomed Biotechnol. 2001;1(1):18–24.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  61. Hotaling J, Carrell DT. Clinical genetic testing for male factor infertility: current applications and future directions. Andrology. 2014;2(3):339–50.

    Article  CAS  PubMed  Google Scholar 

  62. Vogt PH, et al. Human Y chromosome azoospermia factors (AZF) mapped to different subregions in Yq11. Hum Mol Genet. 1996;5(7):933–43.

    Article  CAS  PubMed  Google Scholar 

  63. Vicdan A, et al. Genetic aspects of human male infertility: the frequency of chromosomal abnormalities and Y chromosome microdeletions in severe male factor infertility. Eur J Obstet Gynecol Reprod Biol. 2004;117(1):49–54.

    Article  CAS  PubMed  Google Scholar 

  64. Colaco S, Modi D. Genetics of the human Y chromosome and its association with male infertility. Reprod Biol Endocrinol. 2018;16(1):14.

    Article  PubMed  PubMed Central  Google Scholar 

  65. Luddi A, et al. Spermatogenesis in a man with complete deletion of USP9Y. N Engl J Med. 2009;360(9):881–5.

    Article  CAS  PubMed  Google Scholar 

  66. Ginalski K, et al. Protein structure prediction for the male-specific region of the human Y chromosome. Proc Natl Acad Sci U S A. 2004;101(8):2305–10.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  67. Foresta C, Ferlin A, Moro E. Deletion and expression analysis of AZFa genes on the human Y chromosome revealed a major role for DBY in male infertility. Hum Mol Genet. 2000;9(8):1161–9.

    Article  CAS  PubMed  Google Scholar 

  68. Ditton HJ, et al. The AZFa gene DBY (DDX3Y) is widely transcribed but the protein is limited to the male germ cells by translation control. Hum Mol Genet. 2004;13(19):2333–41.

    Article  CAS  PubMed  Google Scholar 

  69. Lardone MC, et al. Quantification of DDX3Y, RBMY1, DAZ and TSPY mRNAs in testes of patients with severe impairment of spermatogenesis. Mol Hum Reprod. 2007;13(10):705–12.

    Article  CAS  PubMed  Google Scholar 

  70. Walport LJ, et al. Human UTY(KDM6C) is a male-specific N-methyl lysyl demethylase. J Biol Chem. 2014;289(26):18302–13.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  71. Nailwal M, Chauhan JB. Computational analysis of high risk missense variant in human UTY gene: a candidate gene of AZFa sub-region. J Reprod Infertil. 2017;18(3):298–306.

    PubMed  PubMed Central  Google Scholar 

  72. Lee MG, et al. Physical and functional association of a trimethyl H3K4 demethylase and Ring6a/MBLR, a polycomb-like protein. Cell. 2007;128(5):877–87.

    Article  CAS  PubMed  Google Scholar 

  73. Akimoto C, et al. Spermatogenesis-specific association of SMCY and MSH5. Genes Cells. 2008;13(6):623–33.

    Article  CAS  PubMed  Google Scholar 

  74. Lopes AM, et al. The human RPS4 paralogue on Yq11.223 encodes a structurally conserved ribosomal protein and is preferentially expressed during spermatogenesis. BMC Mol Biol. 2010;11:33.

    Article  PubMed  PubMed Central  Google Scholar 

  75. Andres O, et al. RPS4Y gene family evolution in primates. BMC Evol Biol. 2008;8:142.

    Article  PubMed  PubMed Central  Google Scholar 

  76. Lahn BT, Page DC. A human sex-chromosomal gene family expressed in male germ cells and encoding variably charged proteins. Hum Mol Genet. 2000;9(2):311–9.

    Article  CAS  PubMed  Google Scholar 

  77. Navarro-Costa P, Plancha CE, Goncalves J. Genetic dissection of the AZF regions of the human Y chromosome: thriller or filler for male (in)fertility? J Biomed Biotechnol. 2010;2010:936569.

    Article  PubMed  PubMed Central  Google Scholar 

  78. Tessari A, et al. Characterization of HSFY, a novel AZFb gene on the Y chromosome with a possible role in human spermatogenesis. Mol Hum Reprod. 2004;10(4):253–8.

    Article  CAS  PubMed  Google Scholar 

  79. Vinci G, et al. A deletion of a novel heat shock gene on the Y chromosome associated with azoospermia. Mol Hum Reprod. 2005;11(4):295–8.

    Article  CAS  PubMed  Google Scholar 

  80. Abid S, et al. Cellular ontogeny of RBMY during human spermatogenesis and its role in sperm motility. J Biosci. 2013;38(1):85–92.

    Article  CAS  PubMed  Google Scholar 

  81. Yan Y, et al. Copy number variation of functional RBMY1 is associated with sperm motility: an azoospermia factor-linked candidate for asthenozoospermia. Hum Reprod. 2017;32(7):1521–31.

    Article  CAS  PubMed  Google Scholar 

  82. Stouffs K, et al. Expression pattern of the Y-linked PRY gene suggests a function in apoptosis but not in spermatogenesis. Mol Hum Reprod. 2004;10(1):15–21.

    Article  CAS  PubMed  Google Scholar 

  83. O’Flynn OK, Varghese AC, Agarwal A. The genetic causes of male factor infertility: a review. Fertil Steril. 2010;93(1):1–12.

    Article  Google Scholar 

  84. Dai RL, et al. Varicocele and male infertility in Northeast China: Y chromosome microdeletion as an underlying cause. Genet Mol Res. 2015;14(2):6583–90.

    Article  CAS  PubMed  Google Scholar 

  85. Rodovalho RG, Arruda JT, Moura KK. Tracking microdeletions of the AZF region in a patrilineal line of infertile men. Genet Mol Res. 2008;7(3):614–22.

    Article  CAS  PubMed  Google Scholar 

  86. Fu XF, et al. DAZ family proteins, key players for germ cell development. Int J Biol Sci. 2015;11(10):1226–35.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Foresta C, et al. Y chromosome microdeletions in cryptorchidism and idiopathic infertility. J Clin Endocrinol Metab. 1999;84(10):3660–5.

    CAS  PubMed  Google Scholar 

  88. Kuo PL, et al. Expression profiles of the DAZ gene family in human testis with and without spermatogenic failure. Fertil Steril. 2004;81(4):1034–40.

    Article  CAS  PubMed  Google Scholar 

  89. Sen S, et al. Susceptibility of gr/gr rearrangements to azoospermia or oligozoospermia is dependent on DAZ and CDY1 gene copy deletions. J Assist Reprod Genet. 2015;32(9):1333–41.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  90. Zou SW, et al. Expression and localization of VCX/Y proteins and their possible involvement in regulation of ribosome assembly during spermatogenesis. Cell Res. 2003;13(3):171–7.

    Article  CAS  PubMed  Google Scholar 

  91. Tse JY, et al. Specific expression of VCY2 in human male germ cells and its involvement in the pathogenesis of male infertility. Biol Reprod. 2003;69(3):746–51.

    Article  CAS  PubMed  Google Scholar 

  92. Lu C, et al. Gene copy number alterations in the azoospermia-associated AZFc region and their effect on spermatogenic impairment. Mol Hum Reprod. 2014;20(9):836–43.

    Article  CAS  PubMed  Google Scholar 

  93. Lahn BT, et al. Previously uncharacterized histone acetyltransferases implicated in mammalian spermatogenesis. Proc Natl Acad Sci U S A. 2002;99(13):8707–12.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  94. Machev N, et al. Sequence family variant loss from the AZFc interval of the human Y chromosome, but not gene copy loss, is strongly associated with male infertility. J Med Genet. 2004;41(11):814–25.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  95. She ZY, Yang WX. Sry and SoxE genes: how they participate in mammalian sex determination and gonadal development? Semin Cell Dev Biol. 2017;63:13–22.

    Article  CAS  PubMed  Google Scholar 

  96. Quinn A, Koopman P. The molecular genetics of sex determination and sex reversal in mammals. Semin Reprod Med. 2012;30(5):351–63.

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Ethics declarations

 We confirm that this chapter has not used any excerpts from copyrighted (or previously published) works (including websites).

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Li, H. et al. (2021). Sex Chromosome-Linked Diseases. In: Masuzaki, H. (eds) Fetal Morph Functional Diagnosis. Comprehensive Gynecology and Obstetrics. Springer, Singapore. https://doi.org/10.1007/978-981-15-8171-7_15

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8171-7_15

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8170-0

  • Online ISBN: 978-981-15-8171-7

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics