Skip to main content

Modelling Wave Behaviour of Elastic Helical Waveguides

  • Conference paper
  • First Online:
Proceedings of the 14th International Conference on Vibration Problems (ICOVP 2019)

Abstract

Curved and straight waveguides are ubiquitous in engineering structures. For modelling these structures in the mid-frequency and high-frequency range, the knowledge of the wave behaviour can be greatly beneficial. This paper addressed the modelling of such structures using the wave and finite element (WFE) method. In particular, power flow is formulated and investigated, and two numerical examples are presented to demonstrate how the method can be used to analyse structures that comprise straight and helical waveguides.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Achenbach J (1984) Wave propagation in elastic solids. North Holland

    Google Scholar 

  2. Duhamel D, Mace BR, Brennan MJ (2006) Finite element analysis of the vibrations of waveguides and periodic structures. J Sound Vib 294(1–2):205–220

    Article  Google Scholar 

  3. Lee J, Thompson DJ (2001) Dynamic stiffness formulation, free vibration and wave motion of helical springs. J Sound Vib 239

    Google Scholar 

  4. Lee SK (2006) Wave reflection, transmission and propagation in structural waveguides. Ph.D. thesis, University of Southampton

    Google Scholar 

  5. Lee SK, Mace BR, Brennan MJ (2007) Wave propagation, reflection and transmission in curved beams. J Sound Vib 306(3–5):636–656

    Article  Google Scholar 

  6. Love AEM (1899) The propgation of waves of elastic displacement along a helical wire. Trans Cambridge Philos Soc 18:364–374

    Google Scholar 

  7. Mace BR (1984) Wave reflection and transmission in beams. J Sound Vib 72(2):237–246

    Article  Google Scholar 

  8. Mace BR, Duhamel D, Brennan MJ, Hinke L (2005) Finite element prediction of wave motion in structural waveguides. J Acoust Soc Am 117(5):2835–2843

    Article  Google Scholar 

  9. Manconi E, Sorokin S, Garziera R, Soe-Knudsen A (2018) Wave motion and stop-bands in pipes with helical characteristics using wave finite element analysis. J Appl Comput Mech 4:420–428

    Google Scholar 

  10. Mitrou G, Ferguson N, Renno J (2017) Wave transmission through two-dimensional structures by the hybrid FE/WFE approach. J Sound Vib 389:484–501

    Article  Google Scholar 

  11. Mottershead JE (1980) Finite elements for dynamical analysis of helical rods. Int J Mech Sci 22(5):267–283

    Article  MATH  Google Scholar 

  12. Renno J, Mace BR (2013) Calculation of reflection and transmission coefficients of joints using a hybrid finite element/wave and finite element approach. J Sound Vib 332(9):2149–2164

    Article  Google Scholar 

  13. Renno J, Sassi S, Gowid S (2020) Wave propagation in double helical rods. Wave Motion 93

    Google Scholar 

  14. Renno J, Mace BR (2014) Vibration modelling of structural networks using a hybrid finite element/wave and finite element approach. Wave Motion 51(4):566–580

    Article  MathSciNet  MATH  Google Scholar 

  15. Renno J, Mace B (2012) Vibration modelling of helical springs with non-uniform ends. J Sound Vib 331(12):2809–2823

    Article  Google Scholar 

  16. Sorokin SV (2009) Linear dynamics of elastic helical springs: asymptotic analysis of wave propagation. Proc R Soc Lond 465:1513–1537

    MathSciNet  MATH  Google Scholar 

  17. Tanner G (2009) Dynamical energy analysis-determining wave energy distributions in vibro-acoustical structures in the high-frequency regime. J Sound Vib 320(4–5):1023–1038

    Article  Google Scholar 

  18. Waki Y, Mace BR, Brennan MJ (2009) Numerical issues concerning the wave and finite element method for free and forced vibrations of waveguides. J Sound Vib 327(1–2):92–108

    Article  Google Scholar 

  19. Walsh SJ, White RG (2000) Vibrational power transmission in curved beams. J Sound Vib 233(3):455–488

    Article  Google Scholar 

  20. Wittrick WH (1966) On elastic wave propagation in helical springs. Int J Mech Sci 8(1):25–47

    Article  Google Scholar 

  21. Wu CM, Lundberg B (1996) Reflection and transmission of the energy of harmonic elastic waves in a bent bar. J Sound Vib 190(4):645–659

    Article  Google Scholar 

  22. Xiuchang H, Hongxing H, Wu W, Zhipeng D (2013) Research on wave mode conversion of curved beam structures by the wave approach. J Vib Acoust Trans ASME 135(VIB-11-1284)

    Google Scholar 

  23. Yildirim V (1996) Investigation of parameters affecting free vibration frequency of helical springs. Int J Numer Methods Eng 39(1):99–114

    Article  MATH  Google Scholar 

  24. Zhong W, Williams F (1995) On the direct solution of wave propagation for repetitive structures. J Sound Vib 181(3):485–485

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jamil Renno .

Editor information

Editors and Affiliations

Appendix 1. Matrices of Analytical Eigenvalue Problem

Appendix 1. Matrices of Analytical Eigenvalue Problem

As per the notation of [16], we will use the following:

$$ q= \cos ^2 (\psi ), \ r=\sin (\psi ) \cos (\psi ), \ \epsilon =\frac{d}{R}, $$

and \(\kappa \) is the shear coefficient. The matrices of Eq. (2) are scaled to the left and right with a diagonal matrix having a diagonal (1, 1, 1, 1/d, 1/d, 1/d):

$$ \mathbf {A}_0= \left[ \begin{array}{cccccc} -\frac{\epsilon ^2 \left( 2 (\nu +1) q^2+r^2 \kappa \right) }{2 (\nu +1)} &{} 0 &{} 0 &{} -\frac{r \epsilon \kappa }{2 \nu +2} &{} 0 &{} 0 \\ 0 &{} -\frac{r^2 \epsilon ^2 \kappa }{2 (\nu +1)} &{} \frac{q r \epsilon ^2 \kappa }{2 \nu +2} &{} 0 &{} -\frac{r \epsilon \kappa }{2 \nu +2} &{} 0 \\ 0 &{} \frac{q r \epsilon ^2 \kappa }{2 \nu +2} &{} -\frac{q^2 \epsilon ^2 \kappa }{2 (\nu +1)} &{} 0 &{} \frac{q \epsilon \kappa }{2 \nu +2} &{} 0 \\ -\frac{r \epsilon \kappa }{2 \nu +2} &{} 0 &{} 0 &{} -\frac{q^2 \epsilon ^2+r^2 (\nu +1) \epsilon ^2+8 \kappa }{16 (\nu +1)} &{} 0 &{} 0 \\ 0 &{} -\frac{r \epsilon \kappa }{2 \nu +2} &{} \frac{q \epsilon \kappa }{2 \nu +2} &{} 0 &{} -\frac{r^2 (\nu +1) \epsilon ^2+8 \kappa }{16 (\nu +1)} &{} \frac{1}{16} q r \epsilon ^2 \\ 0 &{} 0 &{} 0 &{} 0 &{} \frac{1}{16} q r \epsilon ^2 &{} -\frac{1}{16} q^2 \epsilon ^2 \\ \end{array} \right] , $$
$$ \mathbf {A}_1= \imath \left[ \begin{array}{cccccc} 0 &{} -\frac{r \epsilon \kappa }{\nu +1} &{} \frac{q \epsilon (\kappa +2 \nu +2)}{2 (\nu +1)} &{} 0 &{} -\frac{\kappa }{2 (\nu +1)} &{} 0 \\ \frac{r \epsilon \kappa }{\nu +1} &{} 0 &{} 0 &{} \frac{\kappa }{2 \nu +2} &{} 0 &{} 0 \\ -\frac{q \epsilon (\kappa +2 \nu +2)}{2 (\nu +1)} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} -\frac{\kappa }{2 (\nu +1)} &{} 0 &{} 0 &{} -\frac{r \epsilon }{8} &{} \frac{q \epsilon (\nu +2)}{16 (\nu +1)} \\ \frac{\kappa }{2 \nu +2} &{} 0 &{} 0 &{} \frac{r \epsilon }{8} &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} -\frac{q \epsilon (\nu +2)}{16 (\nu +1)} &{} 0 &{} 0 \\ \end{array} \right] , $$
$$ \mathbf {A}_2= \left[ \begin{array}{cccccc} 0 &{} -\frac{r \epsilon \kappa }{\nu +1} &{} \frac{q \epsilon (\kappa +2 \nu +2)}{2 (\nu +1)} &{} 0 &{} -\frac{\kappa }{2 (\nu +1)} &{} 0 \\ \frac{r \epsilon \kappa }{\nu +1} &{} 0 &{} 0 &{} \frac{\kappa }{2 \nu +2} &{} 0 &{} 0 \\ -\frac{q \epsilon (\kappa +2 \nu +2)}{2 (\nu +1)} &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} -\frac{\kappa }{2 (\nu +1)} &{} 0 &{} 0 &{} -\frac{r \epsilon }{8} &{} \frac{q \epsilon (\nu +2)}{16 (\nu +1)} \\ \frac{\kappa }{2 \nu +2} &{} 0 &{} 0 &{} \frac{r \epsilon }{8} &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} -\frac{q \epsilon (\nu +2)}{16 (\nu +1)} &{} 0 &{} 0 \\ \end{array} \right] , $$

and finally

$$ \mathbf {B}= \left[ \begin{array}{cccccc} 1 &{} 0 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 1 &{} 0 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 1 &{} 0 &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} \frac{1}{16} &{} 0 &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} \frac{1}{16} &{} 0 \\ 0 &{} 0 &{} 0 &{} 0 &{} 0 &{} \frac{1}{8} \\ \end{array} \right] . $$

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Renno, J., Sassi, S., Paurobally, M.R. (2021). Modelling Wave Behaviour of Elastic Helical Waveguides. In: Sapountzakis, E.J., Banerjee, M., Biswas, P., Inan, E. (eds) Proceedings of the 14th International Conference on Vibration Problems. ICOVP 2019. Lecture Notes in Mechanical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-8049-9_56

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-8049-9_56

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-8048-2

  • Online ISBN: 978-981-15-8049-9

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics