Skip to main content

Early Detection of Alzheimer’s Disease from 1.5 T MRI Scans Using 3D Convolutional Neural Network

  • Conference paper
  • First Online:
Proceedings of International Conference on Smart Computing and Cyber Security (SMARTCYBER 2020)

Abstract

Alzheimer’s disease is a neurodegenerative disease that affects the old age population and is affected by the neurofibrillary tangles and neurotic plagues as they impair the neuron’s microtubule transport system. The onset of this disease leads to a decline in the normal cognitive functioning of a person. The commonly observed symptom of AD is the difficulty in remembering the latest events. Moreover, as the progression occurs in a person, it can include symptoms like issues with the language, mood swings, and behavioral issues. As for the particular disease, no cure has been found out yet, to completely eradicate the disease from the body, therefore detection in advance of the disease has proven to be effective in improving a person's life. In the study, 1.5 T T1 weighted MRI scans were acquired from the Alzheimer’s disease neuroimaging initiative (ADNI) database of 910 patients, where 336 were healthy control, 307 were mild cognitive impairment(MCI), and 267 for Alzheimer’s disease. The study leverages a 3D convolutional neural network (3D-CNN) for learning the intricate patterns in the magnetic resonance imaging (MRI) scans for the detection of Alzheimer’s disease. The 3D-CNN model performed superiorly by plotting an accuracy of 95.88%, precision of 0.951, recall of 0.9601, and f1-score of 0.9538.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 229.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 299.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. V. Fonov, A.C. Evans, K. Botteron, C.R. Almli, R.C. Mckinstry, D.L. Collins, Group TBDC. Unbiased average age-appropriate atlases for pediatric studies, 54, 313–327 (2011).

    Google Scholar 

  2. V.S. Fonov, A.C. Evans, R.C. McKinstry, C.R. Almli, D.L. Collins, Unbiased nonlinear average age-appropriate brain templates from birth to adulthood. NeuroImage 47, S102 (2009)

    Article  Google Scholar 

  3. Y. Alemán-Gómez, IBASPM: Toolbox for automatic parcellation of brain structures, in Proceedings of the 12th Annual Meeting of the Organization for Human Brain Mapping, Florence, Italy, 11–15 June 2006.

    Google Scholar 

  4. C. Haaxma et al., Gender differences in Parkinson’s disease. J. Neurol. Neurosurg. Psychiatry 78(8), 819–824 (2007)

    Article  Google Scholar 

  5. R. Miikkulainen, J. Liang, E. Meyerson, A. Rawal, D. Fink, O. Francon, B. Raju, H. Shahrzad, A. Navruzyan, N. Duffy, B. Hodjat, Evolving deep neural networks, in Artificial Intelligence in the Age of Neural Networks and Brain Computing (Academic Press 2019), pp. 293–312

    Google Scholar 

  6. P.I. Frazier, A Tutorial on Bayesian Optimization (2018). https://arxiv.org/abs/1807.02811.

  7. M.A. Osborne, Bayesian Gaussian Processes for Sequential Prediction, Optimisation and Quadrature (Doctoral dissertation, Oxford University, UK, 2010).

    Google Scholar 

  8. M.D. Zeiler, Adadelta: An Adaptive Learning Rate Method (2012). ArXiv preprint arXiv: 1212.5701.

    Google Scholar 

  9. Z. Zhang, S. Mert, Generalized cross entropy loss for training deep neural networks with noisy labels, in Advances in Neural Information Processing Systems (2018), pp. 8778–8788

    Google Scholar 

  10. A. Björklund, S. Dunnett, Dopamine neuron systems in the brain: an update. Trends Neurosci. 30(5), 194–202 (2007)

    Article  Google Scholar 

  11. B. Zhou, A. Khosla, A. Lapedriza, A. Oliva, A. Torralba, Learning Deep Features for Discriminative Localization. CVPR'16 (2015). ArXiv: 1512.04150.

    Google Scholar 

  12. B.N. Patro, M. Lunayach, S. Patel, V.P. Namboodiri, U-cam: visual explanation using uncertainty based class activation maps, in Proceedings of the IEEE International Conference on Computer Vision (2019), pp. 7444–7453.

    Google Scholar 

  13. R.R. Selvaraju, M. Cogswell, A. Das, R. Vedantam, D. Parikh, D. Batra, Grad-cam: visual explanations from deep networks via gradient-based localization, in Proceedings of the IEEE International Conference on Computer Vision (2017), pp. 618–626.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Satyabrata Aich .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Chakraborty, S., Sain, M., Park, J., Aich, S. (2021). Early Detection of Alzheimer’s Disease from 1.5 T MRI Scans Using 3D Convolutional Neural Network. In: Pattnaik, P.K., Sain, M., Al-Absi, A.A., Kumar, P. (eds) Proceedings of International Conference on Smart Computing and Cyber Security. SMARTCYBER 2020. Lecture Notes in Networks and Systems, vol 149. Springer, Singapore. https://doi.org/10.1007/978-981-15-7990-5_2

Download citation

Publish with us

Policies and ethics