Skip to main content

Part of the book series: Springer Theses ((Springer Theses))

  • 190 Accesses

Abstract

In this chapter, a continuous levoglucosan record was reconstructed in the Zangsegangri ice core. The levoglucosan record was classified into two categories: background levels and extreme events. Annually resolved levoglucosan record and background levels in the ice core were strongly correlated with satellite observations of fire variations. In addition, peaks in levoglucosan concentrations may also represent extreme fire events occurred in Central Asia.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Andela N, Morton DC, Giglio L, Chen Y, van der Werf GR, Kasibhatla PS, DeFries RS, Collatz GJ, Hantson S, Kloster S, Bachelet D, Forrest M, Lasslop G, Li F, Mangeon S, Melton JR, Yue C, Randerson JT (2017) A human-driven decline in global burned area. Science 356:1356–1362

    Article  Google Scholar 

  2. Andreae MO, Merlet P (2001) Emission of trace gases and aerosols from biomass burning. Global Biogeochem Cycles 15:955–966

    Article  Google Scholar 

  3. Battistel D, Kehrwald NM, Zennaro P, Pellegrino G, Barbaro E, Zangrando R, Pedeli XX, Varin C, Spolaor A, Vallelonga PT, Gambaro A, Barbante C (2018) High-latitude Southern Hemisphere fire history during the mid- to late Holocene (6000–750 BP). Clim Past 14:871–886

    Article  Google Scholar 

  4. Chen X, Bai J, Li X, Luo G, Li J, Li BL (2013) Changes in land use/land cover and ecosystem services in Central Asia during 1990–2009. Curr Opin Env Sust 5:116–127

    Article  Google Scholar 

  5. Chen Y, Li Y, Zhang M, Cui Z, Liu G (2018) Much late onset of Quaternary glaciations on the Tibetan Plateau: determining the age of the Shishapangma Glaciation using cosmogenic 26Al and 10Be dating. Sci Bull 63:306–313

    Article  Google Scholar 

  6. Dai A (2013) Increasing drought under global warming in observations and models. Nat Clim Change 3:52–58

    Article  Google Scholar 

  7. Field RD, van der Werf GR, Fanin T, Fetzer EJ, Fuller R, Jethva H, Levy R, Livesey NJ, Luo M, Torres O, Worden HM (2016) Indonesian fire activity and smoke pollution in 2015 show persistent nonlinear sensitivity to El Nino-induced drought. Proc Natl Acad Sci USA 113:9204–9209

    Article  Google Scholar 

  8. Giglio L, Schroeder W, Justice CO (2016) The collection 6 MODIS active fire detection algorithm and fire products. Remote Sens Environ 178:31–41

    Article  Google Scholar 

  9. Hu ZY, Zhou QM, Chen X, Qian C, Wang SS, Li JF (2017) Variations and changes of annual precipitation in Central Asia over the last century. Int J Climatol 37:157–170

    Article  Google Scholar 

  10. Johnston FH, Henderson SB, Chen Y, Randerson JT, Marlier M, Defries RS, Kinney P, Bowman DM, Brauer M (2012) Estimated global mortality attributable to smoke from landscape fires. Environ Health Perspect 120:695–701

    Article  Google Scholar 

  11. Kang SC, Zhang QG, Qian Y, Ji ZM, Li CL, Cong ZY, Zhang YL, Guo JM, Du WT, Huang J, You QL, Panday AK, Rupakheti M, Chen DL, Gustafsson O, Thiemens MH, Qin DH (2019) Linking atmospheric pollution to cryospheric change in the Third Pole region: current progress and future prospects. Natl Sci Rev 6:796–809

    Article  Google Scholar 

  12. Kaskaoutis DG, Kumar S, Sharma D, Singh RP, Kharol SK, Sharma M, Singh AK, Singh S, Singh A, Singh D (2014) Effects of crop residue burning on aerosol properties, plume characteristics, and long-range transport over northern India. J Geophys Res-Atmos 119:5424–5444

    Article  Google Scholar 

  13. Kehrwald N, Zangrando R, Gabrielli P, Jaffrezo JL, Boutron C, Barbante C, Gambaro A (2012) Levoglucosan as a specific marker of fire events in Greenland snow. Tellus B 64

    Google Scholar 

  14. Legrand M, McConnell J, Fischer H, Wolff EW, Preunkert S, Arienzo M, Chellman N, Leuenberger D, Maselli O, Place P, Sigl M, Schupbach S, Flannigan M (2016) Boreal fire records in Northern Hemisphere ice cores: a review. Clim Past 12:2033–2059

    Article  Google Scholar 

  15. Lelieveld J, Evans JS, Fnais M, Giannadaki D, Pozzer A (2015) The contribution of outdoor air pollution sources to premature mortality on a global scale. Nature 525:367–371

    Article  Google Scholar 

  16. Li Z, Chen YN, Li WH, Deng HJ, Fang GH (2015) Potential impacts of climate change on vegetation dynamics in Central Asia. J Geophys Res-Atmos 120:12345–12356

    Article  Google Scholar 

  17. Marlier ME, DeFries RS, Voulgarakis A, Kinney PL, Randerson JT, Shindell DT, Chen Y, Faluvegi G (2013) El Nino and health risks from landscape fire emissions in southeast Asia. Nat Clim Change 3:131–136

    Article  Google Scholar 

  18. Marlier ME, Liu T, Yu K, Buonocore JJ, Koplitz SN, DeFries RS, Mickley LJ, Jacob DJ, Schwartz J, Wardhana BS, Myers SS (2019) Fires, smoke exposure, and public health: an integrative framework to maximize health benefits from Peatland restoration. GeoHealth 3:178–189

    Article  Google Scholar 

  19. Marlon JR, Bartlein PJ, Carcaillet C, Gavin DG, Harrison SP, Higuera PE, Joos F, Power MJ, Prentice IC (2008) Climate and human influences on global biomass burning over the past two millennia. Nat Geosci 1:697–702

    Article  Google Scholar 

  20. Marlon JR, Kelly R, Daniau AL, Vannière B, Power MJ, Bartlein P, Higuera P, Blarquez O, Brewer S, Brücher T, Feurdean A, Romera GG, Iglesias V, Maezumi SY, Magi B, Courtney Mustaphi CJ, Zhihai T (2016) Reconstructions of biomass burning from sediment-charcoal records to improve data–model comparisons. Biogeosciences 13:3225–3244

    Article  Google Scholar 

  21. McConnell JR, Edwards R, Kok GL, Flanner MG, Zender CS, Saltzman ES, Banta JR, Pasteris DR, Carter MM, Kahl JD (2007) 20th-century industrial black carbon emissions altered Arctic climate forcing. Science 317:1381–1384

    Article  Google Scholar 

  22. Moritz MA, Batllori E, Bradstock RA, Gill AM, Handmer J, Hessburg PF, Leonard J, McCaffrey S, Odion DC, Schoennagel T, Syphard AD (2014) Learning to coexist with wildfire. Nature 515:58–66

    Article  Google Scholar 

  23. Nemani RR, Keeling CD, Hashimoto H, Jolly WM, Piper SC, Tucker CJ, Myneni RB, Running SW (2003) Climate-driven increases in global terrestrial net primary production from 1982 to 1999. Science 300:1560–1563

    Article  Google Scholar 

  24. Pechony O, Shindell DT (2010) Driving forces of global wildfires over the past millennium and the forthcoming century. Proc Natl Acad Sci USA 107:19167–19170

    Article  Google Scholar 

  25. Pu J, Yao T, Yang M, Tian L, Wang N, Ageta Y, Fujita K (2008) Rapid decrease of mass balance observed in the Xiao (Lesser) Dongkemadi Glacier, in the central Tibetan Plateau. Hydro Process 22:2953–2958

    Article  Google Scholar 

  26. Ramanathan V, Carmichael G (2008) Global and regional climate changes due to black carbon. Nat Geosci 1:221–227

    Article  Google Scholar 

  27. Sahai S, Sharma C, Singh SK, Gupta PK (2011) Assessment of trace gases, carbon and nitrogen emissions from field burning of agricultural residues in India. Nutr Cycl Agroecosys 89:143–157

    Article  Google Scholar 

  28. Seddon AWR, Macias-Fauria M, Long PR, Benz D, Willis KJ (2016) Sensitivity of global terrestrial ecosystems to climate variability. Nature 531:229–232

    Article  Google Scholar 

  29. Shen M, Piao S, Cong N, Zhang G, Jassens IA (2015) Precipitation impacts on vegetation spring phenology on the Tibetan Plateau. Glob Chang Biol 21:3647–3656

    Article  Google Scholar 

  30. Simoneit BRT, Elias VO, Kobayashi M, Kawamura K, Rushdi AI, Medeiros PM, Rogge WF, Didyk BM (2004) Sugars—dominant water-soluble organic compounds in soils and characterization as tracers in atmospheric particulate matter. Environ Sci Technol 38:5939–5949

    Article  Google Scholar 

  31. Simoneit BRT, Schauer JJ, Nolte CG, Oros DR, Elias VO, Fraser MP, Rogge WF, Cass GR (1999) Levoglucosan, a tracer for cellulose in biomass burning and atmospheric particles. Atmos Environ 33:173–182

    Article  Google Scholar 

  32. Suciu LG, Masiello CA, Griffin RJ (2019) Anhydrosugars as tracers in the Earth system. Biogeochemistry

    Google Scholar 

  33. Tamara B-A, David M (2014) Decomposing global crop yield variability. Environ Res Lett 9:114011

    Article  Google Scholar 

  34. Thompson LG, Yao T, Davis ME, Mosley-Thompson E, Wu G, Porter SE, Xu B, Lin P-N, Wang N, Beaudon E, Duan K, Sierra-Hernández MR, Kenny DV (2018) Ice core records of climate variability on the Third Pole with emphasis on the Guliya ice cap, western Kunlun Mountains. Quaternary Sci Rev 188:1–14

    Article  Google Scholar 

  35. Tian LD, Yao TD, MacClune K, White JWC, Schilla A, Vaughn B, Vachon R, Ichiyanagi K (2007) Stable isotopic variations in west China: A consideration of moisture sources. J Geophys Res-Atmos 112

    Google Scholar 

  36. Vadrevu K, Ohara T, Justice C (2017) Land cover, land use changes and air pollution in Asia: a synthesis. Environ Res Lett 12:120201

    Article  Google Scholar 

  37. Vadrevu KP, Ellicott E, Giglio L, Badarinath KVS, Vermote E, Justice C, Lau WKM (2012) Vegetation fires in the Himalayan region—aerosol load, black carbon emissions and smoke plume heights. Atmos Environ 47:241–251

    Article  Google Scholar 

  38. van der Werf GR, Randerson JT, Giglio L, Collatz GJ, Mu M, Kasibhatla PS, Morton DC, DeFries RS, Jin Y, van Leeuwen TT (2010) Global fire emissions and the contribution of deforestation, savanna, forest, agricultural, and peat fires (1997–2009). Atmos Chem Phys 10:11707–11735

    Article  Google Scholar 

  39. Vardoulakis S, Jalaludin BB, Morgan GG, Hanigan IC, Johnston FH (2020) Bushfire smoke: urgent need for a national health protection strategy. Med J Aust 212(349–353):e341

    Google Scholar 

  40. Wang X, Wang T, Liu D, Guo H, Huang H, Zhao Y (2017) Moisture-induced greening of the South Asia over the past three decades. Glob Chang Biol 23:4995–5005

    Article  Google Scholar 

  41. Wu GJ, Zhang CL, Xu BQ, Mao R, Joswiak D, Wang NL, Yao TD (2013) Atmospheric dust from a shallow ice core from Tanggula: implications for drought in the central Tibetan Plateau over the past 155 years. Quaternary Sci Rev 59:57–66

    Article  Google Scholar 

  42. Xu B, Cao J, Hansen J, Yao T, Joswia DR, Wang N, Wu G, Wang M, Zhao H, Yang W, Liu X, He J (2009) Black soot and the survival of Tibetan glaciers. Proc Natl Acad Sci USA 106:22114–22118

    Article  Google Scholar 

  43. Xu C, Ma YM, You C, Zhu ZK (2015) The regional distribution characteristics of aerosol optical depth over the Tibetan Plateau. Atmos Chem Phys 15:12065–12078

    Article  Google Scholar 

  44. Yang J, Tian HQ, Tao B, Ren W, Kush J, Liu YQ, Wang YH (2014) Spatial and temporal patterns of global burned area in response to anthropogenic and environmental factors: reconstructing global fire history for the 20th and early 21st centuries. J Geophys Res Biogeosci 119:249–263

    Article  Google Scholar 

  45. Yang K, Wu H, Qin J, Lin CG, Tang WJ, Chen YY (2014) Recent climate changes over the Tibetan Plateau and their impacts on energy and water cycle: a review. Global Planet Change 112:79–91

    Article  Google Scholar 

  46. Yao T, Masson-Delmotte V, Gao J, Yu W, Yang X, Risi C, Sturm C, Werner M, Zhao H, He Y, Ren W, Tian L, Shi C, Hou S (2013) A review of climatic controls on δ18O in precipitation over the Tibetan Plateau: observations and simulations. Rev Geophys 51:525–548

    Article  Google Scholar 

  47. Yao T, Xue Y, Chen D, Chen F, Thompson L, Cui P, Koike T, Lau WKM, Lettenmaier D, Mosbrugger V, Zhang R, Xu B, Dozier J, Gillespie T, Gu Y, Kang S, Piao S, Sugimoto S, Ueno K, Wang L, Wang W, Zhang F, Sheng Y, Guo W, Ailikun X, Yang Y, Ma SSP, Shen Z, Su F, Chen S, Liang Y, Liu VP, Singh K, Yang D, Yang X, Zhao Y, Qian Y Zhang, Li Q (2019) Recent Third Pole’s rapid warming accompanies cryospheric melt and water cycle intensification and interactions between monsoon and environment: multidisciplinary approach with observations, modeling, and analysis. B Ame Meteorol Soc 100:423–444

    Article  Google Scholar 

  48. Yao T, Yu W, Wu G, Xu B, Yang W, Zhao H, Wang W, Li S, Wang N, Li Z, Liu S, You C (2019) Glacier anomalies and relevant disaster risks on the Tibetan Plateau and surroundings. Chin Sci Bull 64:2770–2782

    Article  Google Scholar 

  49. Yao TD, Thompson L, Yang W, Yu WS, Gao Y, Guo XJ, Yang XX, Duan KQ, Zhao HB, Xu BQ, Pu JC, Lu AX, Xiang Y, Kattel DB, Joswiak D (2012) Different glacier status with atmospheric circulations in Tibetan Plateau and surroundings. Nat Clim Change 2:663–667

    Article  Google Scholar 

  50. You C, Xu C (2018) Review of levoglucosan in glacier snow and ice studies: recent progress and future perspectives. Sci Total Environ 616–617:1533–1539

    Article  Google Scholar 

  51. You C, Xu C, Xu B, Zhao H, Song L (2016) Levoglucosan evidence for biomass burning records over Tibetan glaciers. Environ Pollut 216:173–181

    Article  Google Scholar 

  52. You C, Yao T, Xu C (2019) Environmental significance of levoglucosan records in a central Tibetan ice core. Sci Bull 64:122–127

    Article  Google Scholar 

  53. You C, Yao TD, Xu BQ, Xu C, Zhao HB, Song LL (2016) Effects of sources, transport, and postdepositional processes on levoglucosan records in southeastern Tibetan glaciers. J Geophys Res-Atmos 121:8701–8711

    Article  Google Scholar 

  54. You C, Yao TD, Xu C (2018) Recent increases in wildfires in the Himalayas and surrounding regions detected in Central Tibetan Ice Core records. J Geophys Res-Atmos 123:3285–3291

    Article  Google Scholar 

  55. You C, Yao TD, Xu C, Song LL (2017) Levoglucosan on Tibetan glaciers under different atmospheric circulations. Atmos Environ 152:1–5

    Article  Google Scholar 

  56. Zennaro P, Kehrwald N, Marlon J, Ruddiman WF, Brucher T, Agostinelli C, Dahl-Jensen D, Zangrando R, Gambaro A, Barbante C (2015) Europe on fire three thousand years ago: arson or climate? Geophys Res Lett 42:5023–5033

    Article  Google Scholar 

  57. Zhang C, Lu DS, Chen X, Zhang YM, Maisupova B, Tao Y (2016) The spatiotemporal patterns of vegetation coverage and biomass of the temperate deserts in Central Asia and their relationships with climate controls. Remote Sens Environ 175:271–281

    Article  Google Scholar 

  58. Zhao MS, Running SW (2010) Drought-induced reduction in global terrestrial net primary production from 2000 through 2009. Science 329:940–943

    Article  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Chao You .

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

You, C. (2021). Levoglucosan Records in the Zangsegangri Ice Core. In: Geochemical Behavior of Levoglucosan in Tibetan Plateau Glacier Snow and Ice. Springer Theses. Springer, Singapore. https://doi.org/10.1007/978-981-15-7973-8_5

Download citation

Publish with us

Policies and ethics