Skip to main content

Deep K-Means: A Simple and Effective Method for Data Clustering

  • Conference paper
  • First Online:
Neural Computing for Advanced Applications (NCAA 2020)

Part of the book series: Communications in Computer and Information Science ((CCIS,volume 1265))

Included in the following conference series:

Abstract

Clustering is one of the most fundamental techniques in statistic and machine learning. Due to the simplicity and efficiency, the most frequently used clustering method is the k-means algorithm. In the past decades, k-means and its various extensions have been proposed and successfully applied in data mining practical problems. However, previous clustering methods are typically designed in a single layer formulation. Thus the mapping between the low-dimensional representation obtained by these methods and the original data may contain rather complex hierarchical information. In this paper, a novel deep k-means model is proposed to learn such hidden representations with respect to different implicit lower-level characteristics. By utilizing the deep structure to conduct k-means hierarchically, the hierarchical semantics of data is learned in a layerwise way. The data points from same class are gathered closer layer by layer, which is beneficial for the subsequent learning task. Experiments on benchmark data sets are performed to illustrate the effectiveness of our method.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Notes

  1. 1.

    For simplicity, the layer size (dimensionalities) of layer 1 to layer r is denoted as [\(k_1 \cdots k_r\)] in the experiments.

  2. 2.

    https://archive.ics.uci.edu/ml/datasets.html.

References

  1. Ault, S.V., Perez, R.J., Kimble, C.A., Wang, J.: On speech recognition algorithms. Int. J. Mach. Learn. Comput. 8(6) (2018)

    Google Scholar 

  2. Badea, L.: Clustering and metaclustering with nonnegative matrix decompositions. In: Gama, J., Camacho, R., Brazdil, P.B., Jorge, A.M., Torgo, L. (eds.) ECML 2005. LNCS (LNAI), vol. 3720, pp. 10–22. Springer, Heidelberg (2005). https://doi.org/10.1007/11564096_7

    Chapter  Google Scholar 

  3. Bengio, Y.: Learning deep architectures for AI. Found. Trends® in Mach. Learn. 2(1), 1–127 (2009)

    Article  MathSciNet  MATH  Google Scholar 

  4. Boyd, S., Parikh, N., Chu, E., Peleato, B., Eckstein, J., et al.: Distributed optimization and statistical learning via the alternating direction method of multipliers. Found. Trends® Mach. Learn. 3(1), 1–122 (2011)

    MATH  Google Scholar 

  5. Buchta, C., Kober, M., Feinerer, I., Hornik, K.: Spherical k-means clustering. J. Stat. Softw. 50(10), 1–22 (2012)

    Google Scholar 

  6. Ding, C., He, X.: K-means clustering via principal component analysis. In: Proceedings of the Twenty-First International Conference on Machine Learning, pp. 29–37 (2004)

    Google Scholar 

  7. Ding, C., Li, T., Jordan, M.I.: Convex and semi-nonnegative matrix factorizations. IEEE Trans. Pattern Anal. Mach. Intell. 32(1), 45–55 (2010)

    Article  Google Scholar 

  8. Ding, C., Li, T., Peng, W., Park, H.: Orthogonal nonnegative matrix t-factorizations for clustering. In: Proceedings of the 12th ACM SIGKDD International Conference on Knowledge Discovery and Data Mining, pp. 126–135 (2006)

    Google Scholar 

  9. Gokcay, E., Principe, J.C.: Information theoretic clustering. IEEE Trans. Pattern Anal. Mach. Intell. 24(2), 158–171 (2002)

    Article  Google Scholar 

  10. Gönen, M., Margolin, A.A.: Localized data fusion for kernel k-means clustering with application to cancer biology. In: Advances in Neural Information Processing Systems,. pp. 1305–1313 (2014)

    Google Scholar 

  11. Hou, C., Nie, F., Yi, D., Tao, D.: Discriminative embedded clustering: a framework for grouping high-dimensional data. IEEE Trans. Neural Netw. Learn. Syst. 26(6), 1287–1299 (2015)

    Article  MathSciNet  Google Scholar 

  12. Huang, S., Kang, Z., Xu, Z.: Self-weighted multi-view clustering with soft capped norm. Knowl. Based Syst. 158, 1–8 (2018)

    Article  Google Scholar 

  13. Huang, S., Ren, Y., Xu, Z.: Robust multi-view data clustering with multi-view capped-norm k-means. Neurocomputing 311, 197–208 (2018)

    Article  Google Scholar 

  14. Huang, S., Wang, H., Li, T., Li, T., Xu, Z.: Robust graph regularized nonnegative matrix factorization for clustering. Data Min. Knowl. Disc. 32(2), 483–503 (2018)

    Article  MathSciNet  MATH  Google Scholar 

  15. Huang, S., Xu, Z., Kang, Z., Ren, Y.: Regularized nonnegative matrix factorization with adaptive local structure learning. Neurocomputing 382, 196–209 (2020)

    Article  Google Scholar 

  16. Huang, S., Xu, Z., Lv, J.: Adaptive local structure learning for document co-clustering. Knowl.-Based Syst. 148, 74–84 (2018)

    Article  Google Scholar 

  17. Huang, S., Xu, Z., Wang, F.: Nonnegative matrix factorization with adaptive neighbors. In: International Joint Conference on Neural Networks, pp. 486–493 (2017)

    Google Scholar 

  18. Huang, S., Zhao, P., Ren, Y., Li, T., Xu, Z.: Self-paced and soft-weighted nonnegative matrix factorization for data representation. Knowl.-Based Syst. 164, 29–37 (2018)

    Article  Google Scholar 

  19. Kang, Z., Peng, C., Cheng, Q.: Kernel-driven similarity learning. Neurocomputing 267, 210–219 (2017)

    Article  Google Scholar 

  20. Kang, Z., et al.: Multi-graph fusion for multi-view spectral clustering. Knowl. Based Syst. 189, 105102 (2020)

    Article  Google Scholar 

  21. Kang, Z., Wen, L., Chen, W., Xu, Z.: Low-rank kernel learning for graph-based clustering. Knowl.-Based Syst. 163, 510–517 (2019)

    Article  Google Scholar 

  22. Kang, Z., Xu, H., Wang, B., Zhu, H., Xu, Z.: Clustering with similarity preserving. Neurocomputing 365, 211–218 (2019)

    Article  Google Scholar 

  23. Kang, Z., et al.: Partition level multiview subspace clustering. Neural Netw. 122, 279–288 (2020)

    Article  Google Scholar 

  24. Kong, D., Ding, C., Huang, H.: Robust nonnegative matrix factorization using l21-norm. In: Proceedings of the 20th ACM International Conference on Information and Knowledge Management, pp. 673–682. ACM (2011)

    Google Scholar 

  25. Lee, D.D., Seung, H.S.: Algorithms for non-negative matrix factorization. In: Advances in Neural Information Processing Systems, vol. 13, pp. 556–562 (2001)

    Google Scholar 

  26. Macqueen, J.: Some methods for classification and analysis of multivariate observations. In: Proceedings of Berkeley Symposium on Mathematical Statistics and Probability, pp. 281–297 (1967)

    Google Scholar 

  27. Newling, J., Fleuret, F.: Fast k-means with accurate bounds. In: International Conference on Machine Learning, pp. 936–944 (2016)

    Google Scholar 

  28. Newling, J., Fleuret, F.: Nested mini-batch k-means. In: Advances in Neural Information Processing Systems, pp. 1352–1360 (2016)

    Google Scholar 

  29. Ng, A.Y., Jordan, M.I., Weiss, Y.: On spectral clustering: analysis and an algorithm. In: Advances in Neural Information Processing Systems, pp. 849–856 (2002)

    Google Scholar 

  30. Ren, Y., Domeniconi, C., Zhang, G., Yu, G.: Weighted-object ensemble clustering: methods and analysis. Knowl. Inf. Syst. 51(2), 661–689 (2017)

    Article  Google Scholar 

  31. Ren, Y., Hu, K., Dai, X., Pan, L., Hoi, S.C., Xu, Z.: Semi-supervised deep embedded clustering. Neurocomputing 325, 121–130 (2019)

    Article  Google Scholar 

  32. Ren, Y., Huang, S., Zhao, P., Han, M., Xu, Z.: Self-paced and auto-weighted multi-view clustering. Neurocomputing 383, 248–256 (2020)

    Article  Google Scholar 

  33. Ren, Y., Kamath, U., Domeniconi, C., Xu, Z.: Parallel boosted clustering. Neurocomputing 351, 87–100 (2019)

    Article  Google Scholar 

  34. Ren, Y., Que, X., Yao, D., Xu, Z.: Self-paced multi-task clustering. Neurocomputing 350, 212–220 (2019)

    Article  Google Scholar 

  35. Trigeorgis, G., Bousmalis, K., Zafeiriou, S., Schuller, B.W.: A deep matrix factorization method for learning attribute representations. IEEE Trans. Pattern Anal. Mach. Intell. 39(3), 417–429 (2017)

    Article  Google Scholar 

  36. Tunali, V., Bilgin, T., Camurcu, A.: An improved clustering algorithm for text mining: multi-cluster spherical k-means. Int. Arab J. Inf. Technol. 13(1), 12–19 (2016)

    Google Scholar 

  37. Wang, J., et al.: Enhancing multiphoton upconversion through energy clustering at sublattice level. Nat. Mater. 13(2), 157 (2014)

    Article  Google Scholar 

  38. Wang, L., Pan, C.: Robust level set image segmentation via a local correntropy-based k-means clustering. Pattern Recogn. 47(5), 1917–1925 (2014)

    Article  Google Scholar 

  39. Wu, X., et al.: Top 10 algorithms in data mining. Knowl. Inf. Syst. 14(1), 1–37 (2008)

    Article  Google Scholar 

Download references

Acknowledgments

This work was partially supported by the National Key Research and Development Program of China under Contract 2017YFB1002201, the National Natural Science Fund for Distinguished Young Scholar under Grant 61625204, the State Key Program of the National Science Foundation of China under Grant 61836006, and the Fundamental Research Funds for the Central Universities under Grant 1082204112364.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Shudong Huang .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Huang, S., Kang, Z., Xu, Z. (2020). Deep K-Means: A Simple and Effective Method for Data Clustering. In: Zhang, H., Zhang, Z., Wu, Z., Hao, T. (eds) Neural Computing for Advanced Applications. NCAA 2020. Communications in Computer and Information Science, vol 1265. Springer, Singapore. https://doi.org/10.1007/978-981-15-7670-6_23

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7670-6_23

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7669-0

  • Online ISBN: 978-981-15-7670-6

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics