Skip to main content

Abstract

The presented work mainly intends on reinvestigating the origin of the negative transconductance at higher gate voltages, in a GaN/AlGaN-based high-electron-mobility transistor (HEMT). The analysis is done using TCAD simulations, where the simulated GaN/AlGaN-based HEMT is calibrated to mimic the transfer characteristics of an experimentally verified GaN/AlGaN-based HEMT. As these GaN/AlGaN-based HEMTs are highly susceptible to negative transconductance at lower gate voltages, careful considerations are taken to limit the possibility of obtaining this negative transconductance at lower gate voltages. The study makes use of the 3D conduction band behavior of the AlGaN and GaN layers, the electron concentration and the electric field behavior of the GaN layer to justify the existence of this negative transconductance and alongside validate the legitimacy of the pre-existing theories for the same.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Asif Khan M, Bhattarai A, Kuznia JN, Olson DT (1993) High electron mobility transistor based on a GaN-Alx Ga1−x N heterojunction. Appl Phys Lett 63(9):1214–1215

    Article  Google Scholar 

  2. Lenka TR, Panda AK (2011) Characteristics study of 2DEG transport properties of AlGaN/GaN and AlGaAs/GaAs-based HEMT. Semiconductors 45(5):650–656

    Article  Google Scholar 

  3. Mishra UK, Shen L, Kazior TE, Wu YF (2008) GaN-based RF power devices and amplifiers. Proc IEEE 96(2):287–305

    Article  Google Scholar 

  4. Dora Y, Chakraborty A, McCarthy L, Keller S, DenBaars SP, Mishra UK (2006) High breakdown voltage achieved on AlGaN/GaN HEMTs with integrated slant field plates. IEEE Electron Device Lett 27(9):713–715

    Article  Google Scholar 

  5. Mizutani T, Ito M, Kishimoto S, Nakamura F (2007) AlGaN/GaN HEMTs with thin InGaN cap layer for normally off operation. IEEE Electron Device Lett 28(7):549–551

    Article  Google Scholar 

  6. Volcheck VS, Stempitsky VR (2017) November. Suppression of the self-heating effect in GaN HEMT by few-layer graphene heat spreading elements. J Phys Conf Ser 917(8):082015 (IOP Publishing)

    Google Scholar 

  7. Leone S, Benkhelifa F, Kirste L, Manz C, Quay R, Ambacher O (2019) Epitaxial growth optimization of AlGaN/GaN high electron mobility transistor structures on 3C-SiC/Si. J Appl Phys 125(23):235701

    Article  Google Scholar 

  8. Ge M, Cai Q, Zhang BH, Chen DJ, Hu LQ, Xue JJ, Lu H, Zhang R, Zheng YD (2019) Negative transconductance effect in p-GaN gate AlGaN/GaN HEMTs by traps in unintentionally doped GaN buffer layer. Chin Phys B 28(10):107301

    Article  Google Scholar 

  9. Balakrishnan VR, Kumar V, Ghosh S (2005) The origin of low-frequency negative transconductance dispersion in a pseudomorphic HEMT. Semicond Sci Technol 20(8):783

    Article  Google Scholar 

  10. Lin J, Liu H, Wang S, Liu C, Li M, Wu L (2019) Effect of the high-temperature off-state stresses on the degradation of AlGaN/GaN HEMTs. Electronics 8(11):1339

    Article  Google Scholar 

  11. Vitanov S, Palankovski V, Maroldt S, Quay R (2010, September) Non-linearity of transconductance and source–gate resistance of HEMTs. In: Proceedings of European solid-state device research conference on fringe poster session

    Google Scholar 

  12. Baek J, Shur M (1990) Mechanism of negative transconductance in heterostructure field-effect transistors. IEEE Trans Electron Devices 37(8):1917–1921

    Article  Google Scholar 

  13. Schuermeyer FL, Shur M, Grider DE (1991) Gate current in self-aligned n-channel and p-channel pseudomorphic heterostructure field-effect transistors. IEEE Electron Device Lett 12(10):571–573

    Article  Google Scholar 

  14. Hess K, Morkoc H, Shichijo H, Streetman BG (1979) Negative differential resistance through real-space electron transfer. Appl Phys Lett 35(6):469–471

    Article  Google Scholar 

  15. Hamady S, Morancho F, Beydoun B, Austin P, Gavelle M (2014, August) P-doped region below the AlGaN/GaN interface for normally-off HEMT. In: 2014 16th European conference on power electronics and applications. IEEE, pp 1–8

    Google Scholar 

  16. Cogenda Pvt. Ltd. (2008) Singapore, Genius, 3-d device simulator, Version 1.9.3, Reference Manual

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Awnish Kumar Tripathi .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Singh, S.K., Tripathi, A.K., Saini, G. (2021). Study on the Negative Transconductance in a GaN/AlGaN-Based HEMT. In: Dave, M., Garg, R., Dua, M., Hussien, J. (eds) Proceedings of the International Conference on Paradigms of Computing, Communication and Data Sciences. Algorithms for Intelligent Systems. Springer, Singapore. https://doi.org/10.1007/978-981-15-7533-4_29

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7533-4_29

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7532-7

  • Online ISBN: 978-981-15-7533-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics