Skip to main content

Actual Potentials of Theoretical Chemistry: What Can Be Obtained

  • Chapter
  • First Online:
Theoretical Chemistry for Experimental Chemists
  • 574 Accesses

Abstract

Theoretical calculations of molecules based on quantum chemistry can afford the electronic structures of those. The electronic structure of any molecule or supermolecule based on its wavefunction is the most fundamental and important one, since that gives us the starting point of further analyses of the electronic properties, optical properties, magnetic properties, and other fundamental properties of the molecule concerned. In this chapter, several actual examples of those are to be first described prior to the detailed explanation of complicated calculation methods exhibited in Chap. 3. This plan would be useful to directly have an idea of what kind of information on molecules can actually be obtained by theoretical calculations and how they should be further expanded in each subsection.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • A. Ambrosetti, P. L. Silverstrelli, J. Phys. Chem. C 115, 3695–3702 (2011)

    Google Scholar 

  • R.F.W. Bader, Chem. Rev. 91, 893–928 (1991)

    CAS  Google Scholar 

  • F. Bartha, F. Bogár, A. Peeters, C. van Alsenoy, V. van Doren, Phys. Rev. B 62(10), 142–150 (2000)

    Google Scholar 

  • M.N. Berberan-Santos, J.M.M. Garcia, J. Am. Chem. Soc. 118, 9391–9394 (1996)

    CAS  Google Scholar 

  • A.D. Buckingham, Quart. Rev. Chem. Soc. 13, 183–214 (1959)

    Google Scholar 

  • A.D. Buckingham, B.J. Orr, Quart. Rev. Chem. Soc. 21, 195–212 (1967)

    CAS  Google Scholar 

  • C. van Caillie, R.D. Amos, Chem. Phys. Lett. 308, 249–255 (1999)

    Google Scholar 

  • M. Carnell, S. Grimme, S.D. Peyerimhoff, Chem. Phys. 179, 385–394 (1994)

    CAS  Google Scholar 

  • J. Cioslowski, Electronic Structure Calculations on Fullerenes and Their Derivatives (Oxford University Press, Oxford, 1995)

    Google Scholar 

  • E. Clar, The Aromatic Sextet, Chap. 3 (Wiley, New York, 1972)

    Google Scholar 

  • J.B. Collins, A. Streitwieser Jr., J. Comput. Chem. 1, 81–87 (1980)

    CAS  Google Scholar 

  • J.D. Cox, G. Pilcher, Thermochemistry of Organic and Organometallic Compounds (Academic Press, New York, 1970)

    Google Scholar 

  • S. Dasgupta, W.B. Hammond, W.A. Goddard III, J. Am. Chem. Soc. 118, 12291–12301 (1996)

    CAS  Google Scholar 

  • W.I.F. David, R.M. Ibberson, J.C. Mathewman, K. Prassides, T.J.S. Dennis, J.P. Hare, H.W. Kroto, R. Taylor, D.R.M. Walton, Nature, 353, 147–149 (1991).

    Google Scholar 

  • M.J.S. Dewar, The Molecular Orbital Theory of Organic Chemistry, Chap. 6 (McGraw-Hill, New York, 1969)

    Google Scholar 

  • C. Edmiston, K. Ruedenberg, Rev. Mod. Phys. 35, 457–465 (1963)

    CAS  Google Scholar 

  • Ö. Farkas, H.B. Schlegel, J. Chem. Phys. 111, 10806–10814 (1999)

    CAS  Google Scholar 

  • A. Fernández-Ramos, J.A. Miller, S.J. Klippenstein, D.G. Truhlar, Chem. Rev. 106, 4518–4584 (2006)

    PubMed  Google Scholar 

  • W.H. Flygare, R.C. Benson, Mol. Phys. 20, 225–250 (1971)

    CAS  Google Scholar 

  • J.B. Foresman, M. Head-Gordon, J.A. Pople, M.J. Frisch, J. Phys. Chem. A 96, 135–149 (1992)

    CAS  Google Scholar 

  • J.M. Foster, S.F. Boys, Rev. Mod. Phys. 32, 300–302 (1960)

    CAS  Google Scholar 

  • K. Fukui, T. Yonezawa, H. Shingu, J. Chem. Phys. 20, 722–725 (1952)

    CAS  Google Scholar 

  • K. Fukui, J. Phys. Chem. 74, 4161–4163 (1970)

    CAS  Google Scholar 

  • K. Fukui, Acc. Chem. Res. 4, 57–64 (1971)

    CAS  Google Scholar 

  • K. Fukui, Acc. Chem. Res. 14, 363–368 (1981)

    CAS  Google Scholar 

  • K. Fukui, LES PRIX NOBEL EN 1981 (Nobel Lecture in 1981), (1982), pp. 146–166

    Google Scholar 

  • P. George, M. Trachtman, C.W. Bock, A.M. Brett, Tetrahedron 32, 317–323 (1976)

    CAS  Google Scholar 

  • S.J. Grabowski, Chem. Rev. 111, 2597–2625 (2011)

    CAS  PubMed  Google Scholar 

  • M. Gussoni, R. Rui, G. Zerbi, J. Mol. Struct. 447, 163–215 (1998)

    CAS  Google Scholar 

  • J.C.L. Hageman, R.J. Meier, M. Heinemann, R.A. de Groot, Macromolecules 30, 5953–5957 (1997)

    CAS  Google Scholar 

  • A.E. Hansen, T.D. Bauman, Adv. Chem. Phys. 44, 545–644 (1980)

    CAS  Google Scholar 

  • W. Helfrich, W.G. Schneider, Phys. Rev. Lett. 14, 229–231 (1965)

    CAS  Google Scholar 

  • T. Helgaker, P. Jørgensen, J. Chem. Phys. 95, 2595–2601 (1991)

    CAS  Google Scholar 

  • K.-H. Hellwege, A.M. Hellwege (eds.), Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, II/6 (Springer, Berlin, 1974)

    Google Scholar 

  • K.-H. Hellwege, A.M. Hellwege (eds.), Landolt-Börnstein, Numerical Data and Functional Relationships in Science and Technology, New Series, II/14a (Springer, Berlin, 1982)

    Google Scholar 

  • G. Henkelman, A. Arnaldsson, H. Jónsson, Comput. Mat. Sci. 36, 354–360 (2006)

    Google Scholar 

  • R. Hoffmann, J. Chem. Phys. 39, 1397–1412 (1963)

    CAS  Google Scholar 

  • K.N. Houk, J. Am. Chem. Soc. 95, 4092–4094 (1973)

    CAS  Google Scholar 

  • J.B. Huntington, Solid State Physics, vol. 7, ed. by F. Seitz, D. Turnbull (Academic, New York, 1958)

    Google Scholar 

  • T. Ikeda, H. Adachi, H. Fueno, K. Tanaka, T. Haino, J. Org. Chem. 82, 10062–10069 (2017)

    CAS  PubMed  Google Scholar 

  • A. Ito, H. Miyajima, K. Yoshizawa, K. Tanaka, T. Yamabe, J. Org. Chem. 62, 38–43 (1997)

    CAS  PubMed  Google Scholar 

  • A. Ito, A. Taniguchi, K. Yoshizawa, K. Tanaka, T. Yamabe, Bull. Chem. Soc. Jpn 71, 337–343 (1998)

    CAS  Google Scholar 

  • L. Itzhaki, E. Altus, H. Basch, S. Hoz, Angew. Chem. Int. Ed. 44, 7432–7435 (2005)

    CAS  Google Scholar 

  • T. Iwamoto, M. Tamura, C. Kabuto, M. Kira, Science 290, 504–506 (2000)

    CAS  PubMed  Google Scholar 

  • J.F. Janak, Phys. Rev. B 103, 7165–7168 (1978)

    Google Scholar 

  • K. Kitaura, K. Morokuma, Intern. J. Quantum Chem. 10, 325–340 (1976)

    CAS  Google Scholar 

  • M. Kobayashi, N. Hayakawa, T. Matsuo, B. Li, T. Fukunaga, D. Hashizume, H. Fueno, K. Tanaka, K. Tamao, J. Am. Chem. Soc. 138, 758–761 (2016)

    CAS  PubMed  Google Scholar 

  • T. Koopmans, Physica 1, 104–113 (1934)

    Google Scholar 

  • P. Krishnakumar, D.K. Maity, Comp. Theor. Chem. 1099, 185–194 (2017)

    CAS  Google Scholar 

  • H.W. Kroto, J.R. Heath, S.C. O’Briene, R.F. Curl, R.E. Smalley, Nature 318, 162–163 (1985)

    CAS  Google Scholar 

  • K. Larsson, Ark. Kemi. 16, 215–219 (1960)

    CAS  Google Scholar 

  • J. Lee, H.-J. Cho, B.-J. Jung, N.-S. Cho, H.-K. Shim, Macromolecules 37, 8523–8529 (2004)

    Google Scholar 

  • F. Li, D. Ramage, J.S. Lannin, J. Conceicao, Phys. Rev. B 44, 13167–13170 (1991)

    CAS  Google Scholar 

  • G. van Lier, C. van Alsenoy, V. van Doren, P. Geerlings, Chem. Phys. Lett. 326, 180–185 (2000)

    Google Scholar 

  • P.-O. Löwdin, Phys. Rev. 97, 1474–1489 (1955)

    Google Scholar 

  • M. Mattori, K. Mogi, Y. Sakai, and T. Isobe, J. Phys. Chem. A 104, 10868–10872 (2000)

    Google Scholar 

  • S. Maeda, Y. Harabuchi, Y. Ono, T. Takeguchi, K. Morokuma, Int. J. Quantum Chem. 115, 258–269 (2015)

    CAS  Google Scholar 

  • S. Maeda, K. Ohno, J. Chem. Phys. 124(174306), 1–7 (2006)

    Google Scholar 

  • T. Matsumoto, K. Tanaka, K. Tanaka, Y. Chujo, Dalton Trans. 44, 8697–8707 (2015)

    CAS  PubMed  Google Scholar 

  • H. Mayr, M. Breugst, A.R. Ofial, Angew. Chem. Int. Ed. 50, 6470–6505 (2011)

    CAS  Google Scholar 

  • T. Miyahara, H. Nakatsuji, H. Sugiyama, J. Phys. Chem. A 117, 42–55 (2013)

    Google Scholar 

  • M. Montalti, A. Credi, L. Prodi, M.T. Gandolfi (eds.), Handbook of Photochemistry, 3rd edn. (CRC Press, Boca Raton, Fl, 2006), p. 619

    Google Scholar 

  • K. Morokuma, Acc. Chem. Res. 10, 294–300 (1977)

    CAS  Google Scholar 

  • M. Moteki, S. Maeda, K. Ohno, Organometallics 28, 2218–2224 (2009)

    CAS  Google Scholar 

  • R.S. Mulliken, J. Chem. Phys. 2, 782–793 (1934)

    CAS  Google Scholar 

  • R.S. Mulliken, J. Chem. Phys. 23, 1833–1840 (1952)

    Google Scholar 

  • R.S. Mulliken, J. Chem. Phys. 23, 1841–1846 (1955)

    CAS  Google Scholar 

  • R.S. Mulliken, W.C. Ermler, Diatomic Molecules: Results of Ab Initio Calculations (Academic, New York, 1977), pp. 33–38

    Google Scholar 

  • L.A. Nafie, T.B. Freedman, J. Chem. Phys. 78, 7108–7115 (1983)

    CAS  Google Scholar 

  • A. Nakahashi, Y. Yaguchi, N. Miura, M. Emura, K. Monde, J. Natl. Prod. 74, 707–711 (2011)

    CAS  Google Scholar 

  • K. Nakamae, T. Nishino, H. Ohkubo, J. Macromol. Sci. -Phys. B30, 1–23 (1991)

    Google Scholar 

  • Y. Naruse, J. Ma, K. Takeuchi, T. Nohara, S. Inagaki, Tetrahedron 62, 4491–4497 (2006)

    CAS  Google Scholar 

  • T. Nishino, K. Nishi, T. Tendo, S. Tamba, A. Mori, K. Tanaka, D. Kawaguchi, K. Tanaka, Structure, Mechanics, and Surface Properties of Poly(3-alkylthiophene), Report of the 144th Poval Committee, July 5 (Kyoto Univ, Japan, 2014)

    Google Scholar 

  • K. Ohno, S. Maeda, Chem. Phys. Lett. 384, 277–282 (2004)

    CAS  Google Scholar 

  • T.N. Olney, N.M. Cann, G. Cooper, C.E. Brion, Chem. Phys. 223, 59–98 (1997)

    CAS  Google Scholar 

  • A.A. Ovchinnikov, Theoret. Chim. Acta 47, 297–304 (1978)

    Google Scholar 

  • R.G. Parr, R.G. Pearson, J. Am. Chem. Soc. 105, 7512–7516 (1983)

    CAS  Google Scholar 

  • L. Pauling, The Nature of the Chemical Bond (Cornell Univ. Press, Ithaca, N.Y., 1960)

    Google Scholar 

  • R.G. Pearson, J. Am. Chem. Soc. 85, 3533–3539 (1963)

    CAS  Google Scholar 

  • R.G. Pearson, J. Chem. Educ. 45, 581–586 and 643–648 (1968)

    Google Scholar 

  • A. Peeters, C. van Alsenoy, F. Bartha, F. Bogár, M.–L. Zhang, V. van Doren, Int. J Quantum Chem. 91, 32–38 (2003)

    Google Scholar 

  • J.P. Perdew, R.G. Parr, M. Levy, J.L. Balduz Jr., Phys. Rev. Lett. 49, 1691–1694 (1982)

    CAS  Google Scholar 

  • A.E. Reed, F. Weinhold, J. Chem. Phys. 78, 4066–4073 (1983)

    CAS  Google Scholar 

  • A.E. Reed, R.B. Weinstock, F. Weinhold, J. Chem. Phys. 83, 735–746 (1985)

    CAS  Google Scholar 

  • A.E. Reed, F. Weinhold, J. Chem. Phys. 83, 1736–1740 (1985)

    CAS  Google Scholar 

  • A.E. Reed, L.A. Curtiss, F. Weinhold, Chem. Rev. 88, 899–926 (1988)

    CAS  Google Scholar 

  • J.R. Rumble (ed.), CRC Handbook of Chemistry and Physics, 99th edn. 2018–2019 (CRC Press, Boca Raton, Fl., 2018)

    Google Scholar 

  • P. von Ragué Schleyer, C. Maerker, A. Dransfeld, H. Jiao, N.J.R. van Eikema Hommes, J. Am. Chem. Soc. 118, 6317–6318 (1996)

    Google Scholar 

  • J. Sauer, R. Sustmann, Angew. Chem. Int. Ed. Engl. 19, 779–807 (1980)

    Google Scholar 

  • H.B. Schlegel, WIREs Comput. Mol. Sci. 1, 790–809 (2011)

    CAS  Google Scholar 

  • C. Shang, Z.-P. Liu, J. Chem. Theory Comput. 8, 2215–2222 (2012)

    CAS  PubMed  Google Scholar 

  • K. Shizu, M. Uejima, H. Nomura, T. Sato, K. Tanaka, H. Kaji, C. Adachi, Phys. Rev. Applied 3(014001), 1–7 (2015a)

    Google Scholar 

  • K. Shizu, H. Noda, H. Tanaka, M. Taneda, M. Uejima, T. Sato, K. Tanaka, H. Kaji, C. Adachi, J. Phys. Chem. C 119, 26283–26289 (2015b)

    CAS  Google Scholar 

  • O.V. Sizova, L.V. Skripnikov, A. Yu Sokolov, J. Mol. Struct. THOECHEM 870, 1–9 (2008)

    CAS  Google Scholar 

  • Z. Å pitalský, T. Bleha, Macromol. Theory Simul. 10, 833–841 (2001)

    Google Scholar 

  • P.J. Stephens, J.J. Pan, F.J. Devlin, K. Krohn, T. Kurtán, J. Org. Chem. 72, 3521–3536 (2007)

    CAS  PubMed  Google Scholar 

  • R. Stowasser, R. Hoffmann, J. Am. Chem. Soc. 121, 3414–3420 (1999)

    CAS  Google Scholar 

  • K. Tanaka, K. Ohzeki, S. Nankai, T. Yamabe, H. Shirakawa, J. Phys. Chem. Solids 44, 1069–1075 (1983)

    CAS  Google Scholar 

  • K. Tanaka, S. Wang, T. Yamabe, Synth. Metals 30, 57–65 (1989)

    CAS  Google Scholar 

  • K. Tashiro, Prog. Polym. Sci. 18, 377–435 (1993)

    CAS  Google Scholar 

  • R. Taylor, J.P. Hare, A.K. Abdul-Sada, H.W. Kroto, J. Chem. Soc. Chem. Commun. 1990, 1423–1425 (1990)

    Google Scholar 

  • D. Toptygin, J. Fluoresc. 13, 201–219 (2003)

    CAS  Google Scholar 

  • K.W. Törnroos, Acta Crystallogr. Sect. C 50, 1646–1648 (1994)

    Google Scholar 

  • E. Tsivion, S.P. Veccham, M. Head-Gordon, ChemPhysChem 18, 184–188 (2017)

    CAS  PubMed  Google Scholar 

  • S.P. Verevkin, H.-D. Beckhaus, C. Rüchardt, R. Haag, S.I. Kozhushkov, T. Zywietz, A. de Meijere, H. Jiao, P. von R. Schleyer, J. Am. Chem. Soc. 120, 11130–11135 (1998)

    Google Scholar 

  • K.B. Wiberg, Tetrahedron 24, 1083–1096 (1968)

    CAS  Google Scholar 

  • K.B. Wiberg, Angew. Chem. Int. Ed. Engl. 25, 312–322 (1986)

    Google Scholar 

  • R.B. Woodward, R. Hoffmann, J. Am. Chem. Soc. 87, 395–397 (1965)

    CAS  Google Scholar 

  • R.B. Woodward, R. Hoffmann, Angew. Chem. Intern. Ed. Engl. 8, 781–853 (1969)

    CAS  Google Scholar 

  • S. Xiao, M. Nguyen, X. Gong, Y. Cao, H.B. Wu, D. Moses, A.J. Heeger, Adv. Funct. Mater. 13, 25–29 (2003)

    CAS  Google Scholar 

  • K. Yoshizawa, M. Hatanaka, A. Ito, K. Tanaka, T. Yamabe, Chem. Phys. Lett. 202, 483–488 (1993)

    CAS  Google Scholar 

  • C.-G. Zhan, J.A. Nichols, D.A. Dixon, J. Phys. Chem. A 107, 4184–4195 (2003)

    CAS  Google Scholar 

  • C.-G. Zhen, U. Becker, J. Kieffer, J. Phys. Chem. A 113, 9707–9714 (2009)

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Kazuyoshi Tanaka .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Tanaka, K. (2020). Actual Potentials of Theoretical Chemistry: What Can Be Obtained. In: Theoretical Chemistry for Experimental Chemists. Springer, Singapore. https://doi.org/10.1007/978-981-15-7195-4_2

Download citation

Publish with us

Policies and ethics