Skip to main content

The Universal Information Processing System and Educational Theories and Practices

  • Chapter
  • First Online:
Reconceptualising Information Processing for Education

Abstract

In a general sense, educational theories and concepts may be considered as based on descriptions of one or several components that can be viewed either singly or together as emergent systems, where the sum of the elements of that system constitutes a whole entity with its own distinct qualities. Consider, for example, the modern learning or education theories erected on large, sometimes theoretical and sometimes measurable components, such as communities, underlying psychological dynamics and behavioural relationships (Kop and Hill in Int Rev Res Open Distance Learn 9:1–13, 2008) or memory capacity, task performance and zone of proximal development (Schnotz and Kürschner in Educ Psychol Rev 19:469–508, 2007). Each of these components is arguably a whole entity with its own distinct qualities and, although not all researchers would refer to each of them as emergent systems, recent research in complex systems in education indicates that many of these components may be treated effectively as at least elements of complex systems (e.g., Davis et al. 2008; Mowat and Davis 2010) which are necessarily emergent. Not all educational theories and concepts, however, can be compared using such components or systems, emergent or otherwise, since these components and systems may be based in differing basic assumptions as to what constitutes the basic components or system boundaries.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Alattas, R. J., Patel, S., & Sobh, T. M. (2019). Evolutionary modular robotics: Survey and analysis. Journal of Intelligent and Robotic Systems, 95(3–4), 815–828.

    Google Scholar 

  • Alpaydin, E. (2016). Machine learning: The new AI. Cambridge, MA: MIT Press.

    Google Scholar 

  • Anderson, L. W., Krathwohl, D. R., Airasian, P. W., Cruikshank, K. A., Mayer, R. E., Pintrich, P. R., et al. (Eds.). (2001). A taxonomy for learning, teaching and assessing: A revision of Bloom’s taxonomy of educational objectives. New York, NY: Longman.

    Google Scholar 

  • Baars, B. J., & Gage, N. M. (2010). Cognition, brain, and consciousness: Introduction to cognitive neuroscience. Cambridge, MA: Academic Press.

    Google Scholar 

  • Baluska, F., Gagliano, M., & Witzany, G. (Eds.). (2018). Memory and learning in plants. Cham, Switzerland: Springer International Publishing.

    Google Scholar 

  • Bentley, P. J. (2007). Systemic computation: A model of interacting systems with natural characteristics. In A. Adamatzky, C. Tueuscher, & T. Asai (Eds.), International journal of parallel, emergent and distributed systems (IJPEDS), special issue on emergent computation (Vol. 22, no. 2, pp. 103–121). Oxford, UK: Taylor & Francis.

    Google Scholar 

  • Beston, P. J., Barbet, C., Heerey, E. A., & Thierry, G. (2018). Social feedback interferes with implicit rule learning: Evidence from event-related brain potentials. Cognitive, Affective, & Behavioral Neuroscience, 18(6), 1248–1258.

    Google Scholar 

  • Bloom, B. S. (1956). Taxonomy of educational objectives, Handbook I: The cognitive domain. New York, NY: David McKay.

    Google Scholar 

  • Bloom, B. S. (1984). Taxonomy of educational objectives. Boston, MA: Allyn & Bacon.

    Google Scholar 

  • Borges, R. M. (2005). Do plants and animals differ in phenotypic plasticity? Journal of Bioscience, 30, 41–50.

    Google Scholar 

  • Bruer, J. T. (2016). Where is educational neuroscience? Educational Neuroscience, 1, 2377616115618036. https://doi.org/10.1177/2377616115618036.

    Article  Google Scholar 

  • Calero, C. I., Goldin, A. P., & Sigman, M. (2018). The teaching instinct. Review of Philosophy and Psychology, 9(4), 819–830.

    Google Scholar 

  • Calvin, W. H. (1996). The cerebral code: Thinking a thought in the mosaics of the mind. Cambridge, MA: MIT Press.

    Google Scholar 

  • Casanova, M. F. (2010). Cortical organization: Anatomical findings based on systems theory. Translational Neuroscience, 1(1), 62–71.

    Google Scholar 

  • Chaitin, G. J. (2011). Complexity, randomness and remarks on physics. In G. J. Chaitin, F. A. Doria, & N. C. A. da Costa (Eds.), Goedel’s way: Exploits into an undecidable world (pp. 31–53). London, UK: CRC Press.

    Google Scholar 

  • Chaitin, G. J. (2012). Life as evolving software. In H. Zenil (Ed.), A computable universe: Understanding computation and exploring nature as computation (pp. 1–23). London, UK: World Scientific.

    Google Scholar 

  • Cotterill, R. M. J. (2001). Co-operation of the basal ganglia, cerebellum, sensory cerebrum and hippocampus: Possible implications for cognition, consciousness, intelligence and creativity. Progress in Neurobiology, 64, 1–33.

    Google Scholar 

  • Cotterill, R. M. J. (2008). The material world. New York, NY: Cambridge University Press.

    Google Scholar 

  • Cowan, N. (2017). The many faces of working memory and short-term storage. Psychonomic Bulletin & Review, 24(4), 1158–1170.

    Google Scholar 

  • Davis, B., Sumara, D., & Luce-Kapler, R. (2008). Engaging minds: Changing teaching in complex times. New York, NY: Routledge.

    Google Scholar 

  • Dehaene, S. (2007). A few steps towards a science of mental life. Mind, Brain, and Education, 1(1), 28–47.

    Google Scholar 

  • Dehaene, S. (2009). Reading in the brain: The science and evolution of a human invention. New York, NY: Penguin Viking.

    Google Scholar 

  • Demetriou, A., Shayer, M., & Efklides, A. (2016). Neo-Piagetian theories of cognitive development: Implications and applications for education. New York, NY: Routledge.

    Google Scholar 

  • Dennett, D. C. (1995). Darwin’s dangerous idea: Evolution and the meanings of life. New York, NY: Simon and Schuster.

    Google Scholar 

  • Denton, M. J., Dearden, P. K., & Sowerby, S. J. (2003). Physical law not natural selection as the major determinant of biological complexity in the subcellular realm: New support for the pre-darwinian conception of evolution by natural law. Biosystems, 71(3), 297–303.

    Google Scholar 

  • Doncieux, S., Bredeche, N., Mouret, J. B., & Eiben, A. E. G. (2015). Evolutionary robotics: What, why, and where to. Frontiers in Robotics and AI, 2, 4.

    Google Scholar 

  • Edelman, G. M. (1970). The structure and function of antibodies. Scientific American, 223(2), 34–42.

    Google Scholar 

  • Edelman, G. M. (1987). Neural Darwinism: The theory of neuronal group selection. New York, NY: Basic Books.

    Google Scholar 

  • Edelman, G. M. (1989). The remembered present. New York, NY: Basic Books.

    Google Scholar 

  • Edelman, G. M. (2007). Learning in and from brain-based devices. Science, 318(5853), 1103–1105.

    Google Scholar 

  • Epstein, H. T. (1986). Stages in human brain development. Developmental Brain Research, 30, 114–119.

    Google Scholar 

  • Ericsson, K. A., & Delaney, P. F. (1999). Long-term working memory as an alternative to capacity models of working memory in everyday skilled performance. In A. Miyake & P. Shah (Eds.), Models of working memory: Mechanisms of active maintenance and executive control (pp. 257–297). Cambridge, UK: Cambridge University Press.

    Google Scholar 

  • Faye, J. (2019). How matter becomes conscious. Cham, Switzerland: Springer International Publishing.

    Google Scholar 

  • Finlay, B. L. (2019). Human exceptionalism, our ordinary cortex and our research futures. Developmental Psychobiology, 61(3), 317–322.

    Google Scholar 

  • Finlay, B. L., & Darlington, R. B. (1995). Linked regularities in the development and evolution of mammalian brains. Science, 268, 1578–1584.

    Google Scholar 

  • Finlay, B. L., Darlington, R. B., & Nicastro, N. (2001). Developmental structure in brain evolution. Behavioural and Brain Sciences, 24(2), 263–278 (discussion 278–308).

    Google Scholar 

  • Fischer, K. W., Goswami, U., Geake, J., & The Task Force on the Future of Educational Neuroscience. (2010). The future of educational neuroscience. Mind, Brain, and Education, 4(2), 68–80.

    Google Scholar 

  • Goswami, U. (2008). Cognitive development: The learning brain. Philadelphia, PA: Psychology Press of Taylor and Francis.

    Google Scholar 

  • Gulson, K. N., & Baker, B. M. (2018). New biological rationalities in education. Discourse: Studies in the Cultural Politics of Education, 39(2), 159–168.

    Google Scholar 

  • Haye, A., Matus, C., Cottet, P., & Nino, S. (2018). Autonomy and the ambiguity of biological rationalities: Systems theory, ADHD and Kant. Discourse: Studies in the Cultural Politics of Education, 39(2), 184–195.

    Google Scholar 

  • Huitt, W., & Hummel, J. (2003). Piaget’s theory of cognitive development. In Educational psychology interactive. Valdosta, GA: Valdosta State University. Retrieved June 2009 from http://www.edpsycinteractive.org/topics/cogsys/piaget.html.

  • Kalyuga, S. (2011). Informing: A cognitive load perspective. Informing Science: The International Journal of an Emerging Transdiscipline, 14(1), 33–45.

    Google Scholar 

  • Kirschner, P., Sweller, J., & Clark, R. (2006). Why minimal guidance during instruction does not work: An analysis of the failure of constructivist, discovery, problem-based, experiential and inquiry-based teaching. Educational Psychologist, 41(2), 75–86.

    Google Scholar 

  • Kop, R., & Hill, A. (2008). Connectivism: Learning theory of the future or vestige of the past? International Review of Research in Open and Distance Learning, 9(3), 1–13.

    Google Scholar 

  • Krichmar, J. L. (2018). Neurorobotics—A thriving community and a promising pathway toward intelligent cognitive robots. Frontiers in Neurorobotics, 12, 42.

    Google Scholar 

  • Kuldas, S., Hashim, S., Ismail, H. N., & Abu Bakar, Z. (2015). Reviewing the role of cognitive load, expertise level, motivation, and unconscious processing in working memory performance. International Journal of Educational Psychology, 4(2), 142–169.

    Google Scholar 

  • Lau, K. H., Lam, T. K., Kam, B. H., Nkhoma, M., & Richardson, J. (2018). Benchmarking higher education programs through alignment analysis based on the revised Bloom’s taxonomy. Benchmarking: An International Journal, 25(8), 2828–2849.

    Google Scholar 

  • Lee, Y. J., Kim, M., Jin, Q., Yoon, H. G., & Matsubara, K. (2016). East-Asian primary science curricula: An overview using revised Bloom’s taxonomy. Singapore: Springer.

    Google Scholar 

  • Llinás, R. (2001). I of the vortex: From neurons to self. Cambridge, MA: MIT Press.

    Google Scholar 

  • Loftus, G. R., & Loftus, E. F. (2019). Human memory: The processing of information. New York, NY: Routledge.

    Google Scholar 

  • Lovelock, J. (1995). The ages of Gaia: A biography of our living earth. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Lovelock, J. (2007). The revenge of Gaia: Why the earth is fighting back—And how we can save humanity. Santa Barbara, CA: Allen Lane.

    Google Scholar 

  • Lungarella, M., Iida, F., Bongard, J., & Pfeifer, R. (Eds.). (2007). 50 Years of AI, lecture notes in artificial intelligence 4850. Berlin, Germany: Springer.

    Google Scholar 

  • Mareschal, D., Sirois, S., Westermann, G., & Johnson, M. H. (Eds.). (2007). Neuroconstructivism: Volume II. Perspectives and prospects. Oxford, UK: Oxford University Press.

    Google Scholar 

  • Marin, I., & Kipnis, J. (2013). Learning and memory…and the immune system. Learning & Memory, 20(10), 601–606.

    Google Scholar 

  • Marois, R. (2005). Two-timing attention. Nature Neuroscience, 8(10), 1285–1286.

    Google Scholar 

  • Mayer, R. (2004). Should there be a three-strikes rule against pure discovery learning? The case for guided methods of instruction. American Psychologist, 59, 14–19.

    Google Scholar 

  • Mitchell, M. (2009). Complexity: A guided tour. London, UK: Oxford University Press.

    Google Scholar 

  • Moreno, R. (2010). Cognitive load theory: More food for thought. Instructional Science, 38(2), 135–141.

    Google Scholar 

  • Mottron, L., Dawson, M., & Soulières, I. (2009). What aspects of autism predispose to talent. Philosophical Transactions of the Royal Society of London, Biological Sciences, 364, 1351–1357.

    Google Scholar 

  • Mowat, E., & Davis, B. (2010). Interpreting embodied mathematics using network theory: Implications for mathematics education. Complicity: An International Journal of Complexity and Education, 7(1), 1–31.

    Google Scholar 

  • Opris, I., & Casanova, M. F. (2017). The physics of the mind and brain disorders. Cham, Switzerland: Springer International Publishing.

    Google Scholar 

  • Piaget, J. (1928). The child’s conception of the world. London, UK: Routledge.

    Google Scholar 

  • Postle, B. R. (2006). Working memory as an emergent property of the mind and brain. Neuroscience, 139, 23–38.

    Google Scholar 

  • Postle, B. R. (2015). Neural bases of the short-term retention of visual information. In P. Jolicoeur, C. Lefebvre, & J. Martinez-Trujillo (Eds.), Mechanisms of sensory working memory: Attention and performance XXV (pp. 43–58). London, UK: Academic Press.

    Google Scholar 

  • Reeke, G. N., Jr., Poznanski, R. R., Lindsay, K. A., Rosenberg, J. R., & Sporns, O. (Eds.). (2005). Modeling in the neurosciences: From biological systems to neuromimetic robotics. Boca Raton, Fl: Taylor & Francis.

    Google Scholar 

  • Schnotz, W., & Kürschner, C. (2007). A reconsideration of cognitive load theory. Educational Psychology Review, 19, 469–508.

    Google Scholar 

  • Shannon, C. E. (1948). A mathematical theory of communication. Bell Systems Technical Journal, 27(279–423), 623–656.

    Google Scholar 

  • Shannon, C. E., & Weaver, W. (1963). The mathematical theory of communication. Urbana, IL: University of Illinois Press.

    Google Scholar 

  • Sherwin, W. B. (2015). Genes are information, so information theory is coming to the aid of evolutionary biology. Molecular Ecology Resources, 15(6), 1259–1261.

    Google Scholar 

  • Sigman, M., Peña, M., Goldin, A. P., & Ribeiro, S. (2014). Neuroscience and education: Prime time to build the bridge. Nature Neuroscience, 17(4), 497.

    Google Scholar 

  • Snyder, A. W., Bossomaier, T., & Mitchell, D. J. (2004). Concept formation: ‘Object’ attributes dynamically inhibited from conscious awareness. Journal of Integrative Neuroscience, 3(1), 31–46.

    Google Scholar 

  • Sporns, O. (2009). From complex networks to intelligent systems. In B. Sendhoff, E. Körner, O. Sporns, H. Ritter, & K. Doya (Eds.), Creating brain-like intelligence: From basic principles to complex intelligent systems (pp. 15–30). Berlin, Germany: Springer.

    Google Scholar 

  • Stonier, T. (1997). Information and meaning: An evolutionary perspective. London, UK: Springer.

    Google Scholar 

  • Sweller, J. (1988). Cognitive load during problem solving: Effects on learning. Cognitive Science, 12, 257–285.

    Google Scholar 

  • Sweller, J. (1994). Cognitive load theory, learning difficulty and instructional design. Learning and Instruction, 4, 295–312.

    Google Scholar 

  • Sweller, J. (2004). Instructional design consequences of an analogy between evolution by natural selection and human cognitive architecture. Instructional Science, 32, 9–31.

    Google Scholar 

  • Sweller, J. (2007). Evolutionary biology and educational psychology. In J. S. Carlson & J. R. Levin (Eds.), Educating the evolved mind: Conceptual foundations for an evolutionary educational psychology. Psychological perspectives on contemporary educational issues (Vol. 2, pp. 165–175). Charlotte, VA: Information Age Publishing.

    Google Scholar 

  • Sweller, J. (2010). Cognitive load theory: Recent theoretical advances. In J. Plass, R. Moreno, & R. Breunken (Eds.), Cognitive load theory (pp. 29–47). New York, NY: Cambridge University Press.

    Google Scholar 

  • Sweller, J., Ayres, P., & Kalyuga, S. (2011). Cognitive load theory: Explorations in the learning sciences, instructional systems and performance technologies. Dordrecht, The Netherlands: Springer.

    Google Scholar 

  • Sylwester, R. (1995). A celebration of neurons: An educator’s guide to the human brain. Alexandria, VA: Association for Supervision and Curriculum Development.

    Google Scholar 

  • Tokuhama-Espinosa, T. (2018). Neuromyths: Debunking false ideas about the brain. New York, NY: W. W. Norton & Company.

    Google Scholar 

  • Tokuhama-Espinosa, T. (2019). Five pillars of the mind: Redesigning education to suit the brain. New York, NY: W. W. Norton & Company.

    Google Scholar 

  • Tomasello, M. (1999). The cultural origins of human cognition. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Tomasello, M. (2014). A natural history of human thinking. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Tomasello, M. (2016). A natural history of human morality. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Trewavas, A. (2016). Intelligence, cognition, and language of green plants. Frontiers in Psychology, 7, 588.

    Google Scholar 

  • Van Schaik, C. P. (2006). Why are some animals so smart? Scientific American, 294(4), 48–55.

    Google Scholar 

  • Vygotsky, L. S. (1978). Mind in society. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Vygotsky, L. S. (1986). Thought and language. Cambridge, MA: Harvard University Press.

    Google Scholar 

  • Wolfram, S. (2002). A new kind of science. Champaign, IL: Wolfram Media.

    Google Scholar 

  • Wood, A. J., Ackland, G. J., Dyke, J. G., Williams, H. T. P., & Lenton, T. M. (2008). “Daisyworld”: A review. Reviews of Geophysics, 48, RG1001.

    Google Scholar 

  • Woolcott, G. (2011). A broad view of education and teaching based in educational neuroscience. International Journal for Cross-Disciplinary Subjects in Education, Special Issue, 1(1), 601–606.

    Google Scholar 

  • Woolcott, G. (2013). Giftedness as cultural accumulation: An information processing perspective. High Ability Studies, 24(2), 153–170.

    Google Scholar 

  • Woolcott, G. (2016). Technology and human cultural accumulation: The role of emotion. In S. Tettegah & R. E. Ferdig (Eds.), Emotions, technology, and learning (pp. 243–263). London, UK: Academic Press.

    Google Scholar 

  • Young, G. (2019). Neo-models, neo-stages, networks. In G. Young (Ed.), Causality and development (pp. 241–269). Cham, Switzerland: Springer.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Geoff Woolcott .

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Woolcott, G. (2020). The Universal Information Processing System and Educational Theories and Practices. In: Reconceptualising Information Processing for Education. Springer, Singapore. https://doi.org/10.1007/978-981-15-7051-3_8

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-7051-3_8

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-7050-6

  • Online ISBN: 978-981-15-7051-3

  • eBook Packages: EducationEducation (R0)

Publish with us

Policies and ethics