Skip to main content

Safe Management of Complex River Systems

  • Conference paper
  • First Online:
Transactions on Engineering Technologies (WCECS 2018)

Included in the following conference series:

  • 233 Accesses

Abstract

Nowadays hydroelectricity is one of the leading power generation technologies, which is widely spread all over the World. Despite low ecological impact during normal operation of the hydro power plants in case of emergencies floods can cause severe damages to the environment, built constructions and inhabitants. And this problem is especially important for large rivers with several dams on them. Proper management of complex river systems is especially important. In this Chapter are analyzed current complex river systems management approaches. It is shown, that none of them consider simultaneously rationalization of energy production, maintaining required water level in the river system and minimizing possible damage from seasonal floods at a complex river system. Hence, basing on the literature review a novel approach to describe the system for finding an operational model guide is presented in the Chapter. The developed approach is applied to the mountain region of Valle d’Aosta in North Western Italy. The dynamic modelling is performed using the Powersim simulation tool. Based on the results, a safe balancing may be performed that prevents from uncertainty in storage and water flow with effective utilization and minimum flood occurrence.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Khosravi, K., et al.: A comparative assessment of flood susceptibility modeling using multi-criteria decision-making analysis and machine learning methods. J. Hydrol. 573, 311–323 (2019). https://doi.org/10.1016/j.jhydrol.2019.03.073

    Article  Google Scholar 

  2. Reuther, A.U., Herget, J., Ivy-Ochs, S., Borodavko, P., Kubik, P.W., Heine, K.: Constraining the timing of the most recent cataclysmic flood event from ice-dammed lakes in the Russian Altai Mountains, Siberia, using cosmogenic in situ 10Be. Geology 34(11), 913–916 (2006)

    Article  Google Scholar 

  3. Melillo, J.M., Richmond, T., Yohe, G.W. (eds.): Climate Change Impacts in the United States: The Third National Climate Assessment. U.S. Global Change Research Program, Washington, D.C. (2014)

    Google Scholar 

  4. Chen, H.H., Wang, L.: Hydropower simulation: an overview. Waterpower 87, 803–812 (1987)

    Google Scholar 

  5. Jonkman, S.N., Kelman, I.: An analysis of the causes and circumstances of flood disaster deaths. Disasters 29(1), 75–97 (2005). https://doi.org/10.1111/j.0361-3666.2005.00275.x

    Article  Google Scholar 

  6. Kind, J.M.: Economically efficient flood protection standards for the Netherlands. J. Flood Risk Manage. 7(2), 103–117 (2014)

    Article  Google Scholar 

  7. Zhu, G., et al.: A new moving strategy for the sequential Monte Carlo approach in optimizing the hydrological model parameters. Adv. Water Resour. 114, 164–179 (2018). https://doi.org/10.1016/j.advwatres.2018.02.007. ISSN 0309-1708

    Article  Google Scholar 

  8. Hiew, K.: Optimization algorithms for large scale multi-reservoir hydropower systems.’ Ph.D. dissertation, Dept. of Civil Engineering, Colorado State Univ., Ft. Collins, Colo (1987).

    Google Scholar 

  9. Lund, J., Ferreira, I.: Operating rule optimization for Missouri River reservoir system. J. Water Resour. Plan. Manage. 122(4), 287–295 (1996)

    Article  Google Scholar 

  10. Young, G.: Finding reservoir operating rules. J. Hydraul. Div. Am. Soc. Civ. Eng. 93(6), 297–321 (1967)

    Google Scholar 

  11. Ko, S.-K., Fontane, D., Labadie, J.: Multiobjective optimization of reservoir systems operations. Water Resour. Bull. 28(1), 111–127 (1992)

    Article  Google Scholar 

  12. Postek, K., den Hertog, D., Kind, J., Pustjens, C.: Adjustable robust strategies for flood protection. Omega 82, 142–154 (2018). https://doi.org/10.1016/j.omega.2017.12.009. ISSN 0305-0483

    Article  Google Scholar 

  13. Piekutowski, M.R., Litwinowicz, T., Frowd, R.: Optimal short-term scheduling for a large-scale cascaded hydro system. In: Conference Proceedings Power Industry Computer Application Conference, pp. 292–298. IEEE (1993)

    Google Scholar 

  14. Zhu, F., Zhong, P.A., Xu, B., Wu, Y.N., Zhang, Y.: A multi-criteria decision-making model dealing with correlation among criteria for reservoir flood control operation. J. Hydroinformatics 18(3), 531–543 (2016). https://doi.org/10.1007/s00477-016-1253-3

    Article  Google Scholar 

  15. Karpenko, A.P., Moor, D.A., Mukhlisullina, D.T.: Multicriteria optimization based on neural network, fuzzy and neuro-fuzzy approximation of decision maker’s utility function. Opt. Mem. Neural Netw. 21(1), 1–10 (2012)

    Article  Google Scholar 

  16. Deppermann, A., et al.: Increasing crop production in Russia and Ukraine—regional and global impacts from intensification and recultivation. Environ. Res. Lett. 13(2), 025008 (2018). https://doi.org/10.1088/1748-9326/aaa4a4

    Article  Google Scholar 

  17. Davidsen, C., et al.: Hydroeconomic optimization of reservoir management under downstream water quality constraints. J. Hydrol. 529(3), 1679–1689 (2015). https://doi.org/10.1016/j.jhydrol.2015.08.018. ISSN 0022-1694

    Article  Google Scholar 

  18. Al-Jawad, J.Y., Tanyimboh, T.T.: Reservoir operation using a robust evolutionary optimization algorithm. J. Environ. Manage. 197, 275–286 (2017). https://doi.org/10.1016/j.jenvman.2017.03.081. ISSN 0301-4797

    Article  Google Scholar 

  19. Andrey, P., Konstantin, N.: Intelligence control systems: contemporary problems in theory and implementation. Inf. Technol. Appl 2, 72–78 (2012). Paneuropska vysoka skola

    Google Scholar 

  20. Lakshminarasimman, L., Subramanian, S.: Short-term scheduling of hydrothermal power system with cascaded reservoirs by using modified differential evolution. IEE Proc. Gener. Transm. Distrib. 153(6), 693–700 (2006)

    Article  Google Scholar 

  21. Devisree, M.V., Nowshaja, P.T.: Optimisation of reservoir operations using genetic algorithms. Int. J. Sci. Eng. Res. 5(7), 340–344 (2014)

    Google Scholar 

  22. Hınçal, O., Altan-Sakarya, A.B., Ger, A.M.: Optimization of multireservoir systems by genetic algorithm. Water Resour. Manage. 25(5), 1465–1487 (2011). https://doi.org/10.1007/s11269-010-9755-0

    Article  Google Scholar 

  23. Suiadee, W., Tingsanchali, T.: A combined simulation–genetic algorithm optimization model for optimal rule curves of a reservoir: a case study of the Nam Oon Irrigation Project, Thailand. Hydrol. Process. Int. J. 21(23), 3211–3225 (2007)

    Article  Google Scholar 

  24. Sadati, S., Speelman, S., Sabouhi, M., Gitizadeh, M., Ghahraman, B.: Optimal irrigation water allocation using a genetic algorithm under various weather conditions. Water 6(10), 3068–3084 (2014). https://doi.org/10.3390/w6103068

    Article  Google Scholar 

  25. Fahimdanesh, M., Bahrami, M.E.: Evaluation of physicochemical properties of Iranian mango seed kernel oil. Int. Conf. Nutr. Food Sci. 53(9), 44–49 (2013)

    Google Scholar 

  26. Asfaw, T.D., Saiedi, S.: Optimal short-term cascade reservoirs operation using genetic algorithm. Asian J. Appl. Sci. 4(3), 297–305 (2011)

    Article  Google Scholar 

  27. Raju, K.S., Kumar, D.N.: Irrigation planning using genetic algorithms. Water Resour. Manage. 18(2), 163–176 (2004)

    Article  Google Scholar 

  28. Liu, D., Chen, X., Lou, Z.: A model for the optimal allocation of water resources in a saltwater intrusion area: a case study in Pearl River Delta in China. Water Resour. Manage 24(1), 63 (2010)

    Article  Google Scholar 

  29. Tran, L.D., Schilizzi, S., Chalak, M., Kingwell, R.: Optimizing competitive uses of water for irrigation and fisheries. Agric. Water Manage. 101(1), 42–51 (2011)

    Article  Google Scholar 

  30. Belaineh, G., Peralta, R.C., Hughes, T.C.: Simulation/Optimization Modeling for Water Resources Management. J. Water Resour. Plann. Manage. 125(3), 154–161 (1999)

    Article  Google Scholar 

  31. Manos, B., Bournaris, T., Silleos, N., Antonopoulos, V., Papathanasiou, J.: A decision support system approach for rivers monitoring and sustainable management. Environ. Monit. Assess. 96(1–3), 85–98 (2004)

    Article  Google Scholar 

  32. Marks, D., Domingo, J., Susong, D., Link, T., Garen, D.: A spatially distributed energy balance snowmelt model for application in mountain basins. Hydrol. Process. 13(12–13), 1935–1959 (1999)

    Article  Google Scholar 

  33. Jaiswal, R.K., Ghosh, N.C., Guru, P.: MIKE BASIN based decision support tool for water sharing and irrigation management in Rangawan command of India. Adv. Agric. 2014, 1–10 (2014). https://doi.org/10.1155/2014/924948

    Article  Google Scholar 

  34. Ivanova, O., Neusipin, K., Ivanov, M., Schenone, M., Damiani, L., Revetria, R.: Optimization model of a tandem water reservoir system management. In: Proceedings of The World Congress on Engineering and Computer Science. LNCS, 25–27 October 2017, San Francisco, USA, pp. 893–899 (2017)

    Google Scholar 

  35. Revetria, R., Damiani, L., Ivanov, M., Ivanova, O.: An hybrid simulator for managing hydraulic structures operational modes to ensure the safety of territories with complex river basin from flooding. In: Proceedings of the 2017 Winter Simulation Conference, p. 220. IEEE Press (2017). Proceedings is free access is available at https://ieeexplore.ieee.org/

  36. Berruto, G.: Una Valle d’Aosta, tante Valli d’Aosta? Considerazioni sulle dimensioni del plurilinguismo in una comunità regionale, pp. 44–53. FEC (2003)

    Google Scholar 

  37. Tibone, C., Agnesod, G., Cappio Borlino, M., Tartin, C., Crea, D., Berlier, F.: Noise model application to small hydroelectrical power plants impact evaluation in the Aosta Valley territory. Radiat. Prot. Dosimetry. 137(3–4), 271–274 (2009)

    Article  Google Scholar 

  38. Bittumon, K.B., Ivanov, M., Ivanova, O., Revetria, R., Sunjo, K.V.: Modeling for the Safe Management of Complex River Basins. In: Proceedings of the World Congress on Engineering and Computer Science. LNECS, 23–25 October 2018, San Francisco, USA, pp. 611–617 (2018)

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Roberto Revetria .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Revetria, R., Aleksandrov, A., Ivanov, M., Neysipin, K., Ivanova, O. (2020). Safe Management of Complex River Systems. In: Ao, SI., Kim, H., Amouzegar, M. (eds) Transactions on Engineering Technologies. WCECS 2018. Springer, Singapore. https://doi.org/10.1007/978-981-15-6848-0_5

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-6848-0_5

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-6847-3

  • Online ISBN: 978-981-15-6848-0

  • eBook Packages: Computer ScienceComputer Science (R0)

Publish with us

Policies and ethics