Skip to main content

Stability Studies of Solid Dosage Forms

  • Chapter
  • First Online:
Drug Stability and Chemical Kinetics
  • 1058 Accesses

Abstract

Pharmaceutical preparation mechanism is a continuous phenomenon. Hundreds of new solid formulations are developed every year. Thus, it is necessary to test and evaluate each solid dosage form for the accurate dispensing and safety of consumers. For this purpose, stability studies and chemical kinetic evaluation pattern must be observed to get the license for the delivery of new drug formulation. For the stability evaluation of solid dosage forms, ICH and WHO guidelines have to be followed, in which a series of tests is involved to prove the validity and rationality of solid dosage forms. Furthermore, the factors or issues related to stability are observed, and chemical kinetics of the solid dosage forms are monitored. The chemical kinetics involved in drug products from their preparation to storage cause chemical instability of drug formulation. This instability may be due to hydrolysis, photolysis, racemization, or other chemical reactions induced during preparation or storage. Thus, for this purpose, stability studies are applied to achieve the stable finished product. Degradation reactions constitute the reason of chemical instability. Thus, it is considered as the most important aspect during stability studies. Degradation processes affect the pre-formulation studies. If this process is not monitored, drugs stored in optimum conditions could be vigorously degraded. Thus, the stability testing is required to prevent any kind of unwanted effects and for the achievement of stable drug throughout its expected shelf life.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gilman JW (1999) Flammability and thermal stability studies of polymer layered-silicate (clay) nanocomposites. Appl Clay Sci 15(1–2):31–49

    Article  CAS  Google Scholar 

  2. Arosio P, Vendruscolo M, Dobson CM, Knowles TP (2014) Chemical kinetics for drug discovery to combat protein aggregation diseases. Trends Pharmacol Sci 35(3):127–135

    Article  CAS  PubMed  Google Scholar 

  3. Shah RB, Tawakkul MA, Khan MA (2008) Comparative evaluation of flow for pharmaceutical powders and granules. AAPS PharmSciTech 9(1):250–258

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Sabour S, Frosst N, Hinton GE (2017) Dynamic routing between capsules. In: Advances in neural information processing systems, pp 3856–3866

    Google Scholar 

  5. Lieberman HA, Lachman L, Schwartz JB (1980) Pharmaceutical dosage forms: tablets. M. Dekker

    Google Scholar 

  6. Ansel HC (2005) Solid oral modified-release dosage form and drug delivery system. In: Pharmaceutical dosage forms and drug delivery systems. Lippincott Williams and Wilkins, a Wolters Kluwer Business, pp 257–260

    Google Scholar 

  7. Bakshi M, Singh S (2002) Development of stability-indicating assay methods — critical review. J Pharm Biomed Anal 28:1011–1040

    Article  CAS  PubMed  Google Scholar 

  8. Zhang Y, Trissel L (2006) Physical instability of frozen pemetrexed solutions in PVC bags. Ann Pharmacother 40:1289–1292

    Article  CAS  PubMed  Google Scholar 

  9. Chi EY, Krishnan S, Randolph TW, Carpenter JF (2003) Physical stability of proteins in aqueous solution; mechanism and driving forces in non-native protein aggregation. Pharm Res 20:1325–1336

    Article  CAS  PubMed  Google Scholar 

  10. Bee SJ, Chiu D, Sawicki S, Stevenson JL, Chatterjee K, Freund E et al (2009) Monoclonal antibody interactions with micro-and nanoparticles: adsorption, aggregation, and accelerated stress studies. J Pharm Sci 98:3218–3238

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Bee SJ, Melson SA, Freund E, Carpenter JF, Randolph TW (2009) Precipitation of monoclonal antibody by soluble tungsten. J Pharm Sci 98:3290–3301

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  12. Philo JS, Arakawa T (2009) Mechanisms of protein aggregation. Curr Pharm Biotechnol 10:348–351

    Article  CAS  PubMed  Google Scholar 

  13. Mahler HC, Friess W, Grauschopf U, Kiese S (2009) Protein aggregation: pathways, induction factors, and analysis. J Pharm Sci 98:2909–2934

    Article  CAS  PubMed  Google Scholar 

  14. Lalou A, Blanchet B, Carvalho M, Paul M, Astier A (2009) Mechanically-induced aggregation of the monoclonal antibody cetuximab. Ann Pharm Fr 67:340–352

    Article  Google Scholar 

  15. Paul M, Lalou A, Carvalho M, Blanchet B, Astier A (2008) Thermal stability of two monoclonal antibodies: cetuximab and bevacizumab. Eur J Oncol Pharm 2:37

    Google Scholar 

  16. Malher HC, Müller R, Frie W, Dellile A, Matheus S (2005) Induction and analysis of aggregates in a liquid IgG1-antibody formulation. Eur J Pharm Biopharm 59:407–417

    Article  Google Scholar 

  17. Hong DD, Shah M (2000) Development and validation of HPLC stability indicating assays. In: Carstensen JT, Rhodes CT (eds) Drug stability: principles and practices. Marcel Dekker, New York, pp 329–384

    Google Scholar 

  18. Williams LA, Hastings MB (2009) Identifying the criteria of a valid stability study. Int J Pharm Compd 13:32–36

    CAS  PubMed  Google Scholar 

  19. Bakshi M, Singh S (2002) Development of validated stability-indicating assay methods-critical review. J Pharm Biomed Anal 28(6):1011–1040

    Article  CAS  PubMed  Google Scholar 

  20. Devleeschouwer MJ, Dony J (1979) Microbial purity of vegetal drugs and their mixtures (author’s transl). J Pharm Belg 34(5):260

    CAS  PubMed  Google Scholar 

  21. Kallings LO, Ringertz O, Silverstolpe L (1966) Microbiological contamination of medical preparations. Acta Pharm Sin 3(3):219

    CAS  Google Scholar 

  22. Bos CE, Van Doorne H, Lerk CF (1989) Microbiological stability of tablets stored under tropical conditions. Int J Pharm 55(2–3):175–183

    Article  CAS  Google Scholar 

  23. Fassihi AR, Parker MS (1987) Inimical effects of compaction speed on microorganisms in powder systems with dissimilar compaction mechanisms. J Pharm Sci 76(6):466–470

    Article  CAS  PubMed  Google Scholar 

  24. Blair TC, Buckton G, Bloomfield SF (1988) Preservation of solid oral dosage forms. In: Microbial quality assurance in pharmaceuticals, cosmetics and toiletries, pp 104–118

    Google Scholar 

  25. Kendall P. Conflict and mood; factors affecting stability of response

    Google Scholar 

  26. Narang AS, Desai D, Badawy S (2015) Impact of excipient interactions on solid dosage form stability. In: Excipient applications in formulation design and drug delivery. Springer, Cham, pp 93–137

    Chapter  Google Scholar 

  27. Steinfeld JI, Francisco JS, Hase WL (1989) Chemical kinetics and dynamics. Englewood Cliffs, Prentice Hall

    Google Scholar 

  28. Bischoff KB (1965 Mar) Effectiveness factors for general reaction rate forms. AICHE J 11(2):351–355

    Article  CAS  Google Scholar 

  29. Hänggi P, Talkner P, Borkovec M (1990) Reaction-rate theory: fifty years after Kramers. Rev Mod Phys 62(2):251

    Article  Google Scholar 

  30. Graf WL (1977) The rate law in fluvial geomorphology. Am J Sci 277(2):178–191

    Article  Google Scholar 

  31. Ho YS, McKay G (1999) Pseudo-second order model for sorption processes. Process Biochem 34(5):451–465

    Article  CAS  Google Scholar 

  32. Rodrigues AE, Orfao JM, Zoulalian A (1984) Intraparticle convection, diffusion and zero order reaction in porous catalysts. Chem Eng Commun 27(5–6):327–337

    Article  CAS  Google Scholar 

  33. Gadgil C, Lee CH, Othmer HG (2005) A stochastic analysis of first-order reaction networks. Bull Math Biol 67(5):901–946

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Oluremi BB, Bamiro OA, Idowu AO, Oduneye OA (2012) Effect of compression pressure, preservative, and storage with Potassium Chloride on the microbiological quality of tablets formulated with Terminalia randii Gum (Combretaceae). Pak J Pharm Sci 25(4)

    Google Scholar 

  35. Jarvie DM (1991) Factors affecting Rock-Eval derived kinetic parameters. Chem Geol 93(1–2):79–99

    Article  CAS  Google Scholar 

  36. Connors KA (1990) Chemical kinetics: the study of reaction rates in solution. Wiley-VCH Verlag GmbH

    Google Scholar 

  37. Unit P, World Health Organization (1994) WHO guidelines on stability testing of pharmaceutical products containing well-established drug substances in conventional dosage forms. World Health Organization

    Google Scholar 

  38. Bajaj S, Singla D, Sakhuja N (2012) Stability testing of pharmaceutical products. J App Pharm Sci 2(3):129–138

    Google Scholar 

  39. Junwal M, Sahu A, Handa T, Shah RP, Singh S (2012) ICH guidance in practice: degradation behaviour of oseltamivir phosphate under stress conditions. J Pharm Biomed Anal 62:48–60

    Article  CAS  PubMed  Google Scholar 

  40. Singh S (2000) Stability testing during product development in Jain NK pharmaceutical product development. CBS publisher and distributors, India, pp 272–293

    Google Scholar 

  41. Grimm W (1998) Extension of the international conference on harmonization tripartite guideline for stability testing of new drug substances and products to countries of climatic zones III and IV. Drug Dev Ind Pharm 24(4):313–325

    Article  CAS  PubMed  Google Scholar 

  42. Mollica JA, Ahuja S, Cohen J (1978) Stability of pharmaceuticals. J Pharm Sci 67(4):443–465

    Article  CAS  PubMed  Google Scholar 

  43. Guideline IH (2003) Stability testing of new drug substances and products. Q1A (R2). Current Step 4:1–24

    Google Scholar 

  44. Hou JP, Poole JW (1969) The amino acid nature of ampicillin and related penicillins. J Pharm Sci 58(12):1510–1515

    Article  CAS  PubMed  Google Scholar 

  45. Vigneron J (2018) Stability studies: a scientific mission of the hospital pharmacist. Pharma Technol Hosp Pharm 2(4):143–144

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Ghulam Murtaza .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Murtaza, G., Ijaz, M., Anam, H., Shamim, S. (2020). Stability Studies of Solid Dosage Forms. In: Akash, M.S.H., Rehman, K. (eds) Drug Stability and Chemical Kinetics. Springer, Singapore. https://doi.org/10.1007/978-981-15-6426-0_16

Download citation

Publish with us

Policies and ethics