Skip to main content

Dark-Field Hyperspectral Imaging (DF-HSI) Modalities for Characterization of Single Molecule and Cellular Processes

  • Chapter
  • First Online:
Nanophotonics in Biomedical Engineering

Abstract

Hyperspectral dark-field spectroscopy is achieved by combing a dark-field optical microscope with a hyperspectral detector. Due to recent advancements in optics, detection systems, image reconstruction, and computational capacity, the optical resolution of hyperspectral imaging (HSI) can now be translated down to micrometer and nanometer dimensions. Thus, making it possible to exquisitely detect and analyze single nanostructures to heterogeneous biological systems. HSI can now be used to validate, assist, and replace traditional imaging and spectroscopic technologies used to study plasmonic nanoparticles. Plasmonic nanostructures are of tremendous importance to study DNA coupling mechanisms in biosensors, virus–host interactions in the infected cells, live cell imaging coupled with motion detection of nano-objects, cancer detection, immunotherapies, toxicity and transport mechanisms, and targeted drug delivery. Many biological problems can be solved by capturing and understanding electromagnetic radiation–matter interactions in the form of scattering, transmission, and absorption by a high-throughput and robust imaging modality. Another active area of research where HSI has been used as a low-cost, label-free technique is to investigate single cellular processes, single molecule interactions, and un-mix information of tissue-level structures in the surgical procedures. This book chapter provides a brief description attributed to working principle of dark-field hyperspectral imaging. Further, advanced applications of HSI in detecting single and ensemble plasmonic nanostructures, single molecule events, environmental sensing, single cell imaging, biological analysis, and surgical vision are described.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Schultz RA, Nielsen T, Zavaleta JR, Ruch R, Wyatt R, Garner HR. Hyperspectral imaging: a novel approach for microscopic analysis. Cytometry. 2001;43:239–47.

    Article  CAS  PubMed  Google Scholar 

  2. Wang X, Cui Y, Irudayaraj J. Single-cell quantification of cytosine modifications by hyperspectral dark-field imaging. ACS Nano. 2015;9:11924–32.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Conti M, Scanferlato R, Louka M, Sansone A, Marzetti C, Ferreri C. Building up spectral libraries for mapping erythrocytes by hyperspectral dark field microscopy. Biomed Spectrosc Imag. 2016;5:175–84.

    Article  CAS  Google Scholar 

  4. More SS, Vince R. Hyperspectral imaging signatures detect amyloidopathy in Alzheimer’s mouse retina well before onset of cognitive decline. ACS Chem Neurosci. 2014;6:306–15.

    Article  PubMed  CAS  Google Scholar 

  5. Lu G, Fei B. Medical hyperspectral imaging: a review. J Biomed Opt. 2014;19:010901.

    Article  PubMed Central  CAS  Google Scholar 

  6. Vo-Dinh T. A hyperspectral imaging system for in vivo optical diagnostics. IEEE Eng Med Biol Mag. 2004;23:40–9.

    Article  PubMed  Google Scholar 

  7. Oh ES, Heo C, Kim JS, Suh M, Lee YH, Kim J-M. Hyperspectral fluorescence imaging for cellular iron mapping in the in vitro model of Parkinson’s disease. J Biomed Opt. 2013;19:051207.

    Article  CAS  Google Scholar 

  8. Verebes GS, Melchiorre M, Garcia-Leis A, Ferreri C, Marzetti C, Torreggiani A. Hyperspectral enhanced dark field microscopy for imaging blood cells. J Biophotonics. 2013;6:960–7.

    Article  CAS  PubMed  Google Scholar 

  9. Vermaas WF, Timlin JA, Jones HD, Sinclair MB, Nieman LT, Hamad SW, Melgaard DK, Haaland DM. In vivo hyperspectral confocal fluorescence imaging to determine pigment localization and distribution in cyanobacterial cells. Proc Natl Acad Sci. 2008;105:4050–5.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Boldrini B, Kessler W, Rebner K, Kessler RW. Hyperspectral imaging: a review of best practice, performance and pitfalls for in-line and on-line applications. J Near Infrared Spectrosc. 2012;20:483–508.

    Article  CAS  Google Scholar 

  11. Schnarr K, Mooney R, Weng Y, Zhao D, Garcia E, Armstrong B, Annala AJ, Kim SU, Aboody KS, Berlin JM. Gold nanoparticle-loaded neural stem cells for photothermal ablation of cancer. Adv Healthcare Mater. 2013;2:976–82.

    Article  CAS  Google Scholar 

  12. Gupta N. Development of staring hyperspectral imagers. In: Applied Imagery Pattern Recognition Workshop (AIPR), 2011 IEEE. Washington, DC: IEEE; 2011. p. 1–8.

    Google Scholar 

  13. Weitzel L, Krabbe A, Kroker H, Thatte N, Tacconi-Garman L, Cameron M, Genzel R. 3D: the next generation near-infrared imaging spectrometer. Astron Astrophys Suppl Ser. 1996;119:531–46.

    Article  CAS  Google Scholar 

  14. Owen DM, Manning HB, de Beule P, Talbot C, Requejo-Isidro J, Dunsby C, McGinty J, Benninger RK, Elson DS, Munro I. Development of a hyperspectral fluorescence lifetime imaging microscope and its application to tissue imaging. In: Imaging, manipulation, and analysis of biomolecules, cells, and tissues V. Bellingham, WA: International Society for Optics and Photonics; 2007. 64411K.

    Google Scholar 

  15. Schultz S, Smith DR, Mock JJ, Schultz DA. Single-target molecule detection with nonbleaching multicolor optical immunolabels. Proc Natl Acad Sci. 2000;97:996–1001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Yguerabide J, Yguerabide EE. Light-scattering submicroscopic particles as highly fluorescent analogs and their use as tracer labels in clinical and biological applications: II. Experimental characterization. Anal Biochem. 1998;262:157–76.

    Article  CAS  PubMed  Google Scholar 

  17. Wang W. Imaging the chemical activity of single nanoparticles with optical microscopy. Chem Soc Rev. 2018;47:2485–508.

    Article  CAS  PubMed  Google Scholar 

  18. Li T, Wu X, Liu F, Li N. Analytical methods based on the light-scattering of plasmonic nanoparticles at the single particle level with dark-field microscopy imaging. Analyst. 2017;142:248–56.

    Article  CAS  PubMed  Google Scholar 

  19. Yonzon CR, Jeoung E, Zou S, Schatz GC, Mrksich M, Van Duyne RP. A comparative analysis of localized and propagating surface plasmon resonance sensors: the binding of concanavalin A to a monosaccharide functionalized self-assembled monolayer. J Am Chem Soc. 2004;126:12669–76.

    Article  CAS  PubMed  Google Scholar 

  20. Anker JN, Hall WP, Lyandres O, Shah NC, Zhao J, Van Duyne RP. Biosensing with plasmonic nanosensors, nanoscience and technology: a collection of reviews from Nature Journals. Singapore: World Scientific; 2010. p. 308–19.

    Google Scholar 

  21. Haes AJ, Chang L, Klein WL, Van Duyne RP. Detection of a biomarker for Alzheimer’s disease from synthetic and clinical samples using a nanoscale optical biosensor. J Am Chem Soc. 2005;127:2264–71.

    Article  CAS  PubMed  Google Scholar 

  22. Dahlin AB, Tegenfeldt JO, Höök F. Improving the instrumental resolution of sensors based on localized surface plasmon resonance. Anal Chem. 2006;78:4416–23.

    Article  CAS  PubMed  Google Scholar 

  23. McFarland AD, Van Duyne RP. Single silver nanoparticles as real-time optical sensors with zeptomole sensitivity. Nano Lett. 2003;3:1057–62.

    Article  CAS  Google Scholar 

  24. Ozbay E. Plasmonics: merging photonics and electronics at nanoscale dimensions. Science. 2006;311:189–93.

    Article  CAS  PubMed  Google Scholar 

  25. Bohren C, Huffman D. Absorption and scattering of light by small particles. New York, NY: Wiley; 1983.

    Google Scholar 

  26. Willets KA, Van Duyne RP. Localized surface plasmon resonance spectroscopy and sensing. Annu Rev Phys Chem. 2007;58:267–97.

    Article  CAS  PubMed  Google Scholar 

  27. Haes AJ, Van Duyne RP. A unified view of propagating and localized surface plasmon resonance biosensors. Anal Bioanal Chem. 2004;379:920–30.

    Article  CAS  PubMed  Google Scholar 

  28. Petryayeva E, Krull UJ. Localized surface plasmon resonance: nanostructures, bioassays and biosensing—a review. Anal Chim Acta. 2011;706:8–24.

    Article  CAS  PubMed  Google Scholar 

  29. Jain PK, Lee KS, El-Sayed IH, El-Sayed MA. Calculated absorption and scattering properties of gold nanoparticles of different size, shape, and composition: applications in biological imaging and biomedicine. J Phys Chem B. 2006;110:7238–48.

    Article  CAS  PubMed  Google Scholar 

  30. Shi L, Jing C, Ma W, Li DW, Halls JE, Marken F, Long YT. Plasmon resonance scattering spectroscopy at the single-nanoparticle level: real-time monitoring of a click reaction. Angew Chem Int Ed. 2013;52:6011–4.

    Article  CAS  Google Scholar 

  31. Shi L, Jing C, Gu Z, Long Y-T. Brightening gold nanoparticles: new sensing approach based on plasmon resonance energy transfer. Sci Rep. 2015;5:10142.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Bu T, Zako T, Fujita M, Maeda M. Detection of DNA induced gold nanoparticle aggregation with dark field imaging. Chem Commun. 2013;49:7531–3.

    Article  CAS  Google Scholar 

  33. Li K, Qin W, Li F, Zhao X, Jiang B, Wang K, Deng S, Fan C, Li D. Nanoplasmonic imaging of latent fingerprints and identification of cocaine. Angew Chem Int Ed. 2013;52:11542–5.

    Article  CAS  Google Scholar 

  34. Poon C-Y, Wei L, Xu Y, Chen B, Xiao L, Li H-W. Quantification of cancer biomarkers in serum using scattering-based quantitative single particle intensity measurement with a dark-field microscope. Anal Chem. 2016;88:8849–56.

    Article  CAS  PubMed  Google Scholar 

  35. Guo L, Ferhan AR, Chen H, Li C, Chen G, Hong S, Kim DH. Distance-mediated plasmonic dimers for reusable colorimetric switches: a measurable peak shift of more than 60 nm. Small. 2013;9:234–40.

    Article  CAS  PubMed  Google Scholar 

  36. Lee K, Cui Y, Lee LP, Irudayaraj J. Quantitative imaging of single mRNA splice variants in living cells. Nat Nanotechnol. 2014;9:474.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  37. Xiong B, Zhou R, Hao J, Jia Y, He Y, Yeung ES. Highly sensitive sulphide mapping in live cells by kinetic spectral analysis of single Au-Ag core-shell nanoparticles. Nat Commun. 2013;4:1708.

    Article  PubMed  CAS  Google Scholar 

  38. Hao J, Xiong B, Cheng X, He Y, Yeung ES. High-throughput sulfide sensing with colorimetric analysis of single Au–Ag core–shell nanoparticles. Anal Chem. 2014;86:4663–7.

    Article  CAS  PubMed  Google Scholar 

  39. Chen Z, Li J, Chen X, Cao J, Zhang J, Min Q, Zhu J-J. Single gold@ silver nanoprobes for real-time tracing the entire autophagy process at single-cell level. J Am Chem Soc. 2015;137:1903–8.

    Article  CAS  PubMed  Google Scholar 

  40. Zhou J, Yang T, He W, Pan Z, Huang CZ. Galvanic exchange process visualized on single silver nanoparticles via dark-field microscopic imaging. Nanoscale. 2018;10:12805.

    Article  CAS  PubMed  Google Scholar 

  41. Smith JG, Yang Q, Jain PK. Identification of a critical intermediate in galvanic exchange reactions by single-nanoparticle-resolved kinetics. Angew Chem. 2014;126:2911–6.

    Article  Google Scholar 

  42. Bansal V, Jani H, Du Plessis J, Coloe PJ, Bhargava SK. Galvanic replacement reaction on metal films: a one-step approach to create nanoporous surfaces for catalysis. Adv Mater. 2008;20:717–23.

    Article  CAS  Google Scholar 

  43. Zhang S, Geryak R, Geldmeier J, Kim S, Tsukruk VV. Synthesis, assembly, and applications of hybrid nanostructures for biosensing. Chem Rev. 2017;117:12942–3038.

    Article  CAS  PubMed  Google Scholar 

  44. González E, Arbiol J, Puntes VF. Carving at the nanoscale: sequential galvanic exchange and Kirkendall growth at room temperature. Science. 2011;334:1377–80.

    Article  PubMed  CAS  Google Scholar 

  45. Smith JG, Chakraborty I, Jain PK. In situ single-nanoparticle spectroscopy study of bimetallic nanostructure formation. Angew Chem Int Ed. 2016;55:9979–83.

    Article  CAS  Google Scholar 

  46. Smith JG, Jain PK. The ligand shell as an energy barrier in surface reactions on transition metal nanoparticles. J Am Chem Soc. 2016;138:6765–73.

    Article  CAS  PubMed  Google Scholar 

  47. Liu Y, Huang CZ. Real-time dark-field scattering microscopic monitoring of the in situ growth of single Ag@ Hg nanoalloys. ACS Nano. 2013;7:11026–34.

    Article  CAS  PubMed  Google Scholar 

  48. Novo C, Funston AM, Mulvaney P. Direct observation of chemical reactions on single gold nanocrystals using surface plasmon spectroscopy. Nat Nanotechnol. 2008;3:598.

    Article  CAS  PubMed  Google Scholar 

  49. Lei G, Gao PF, Yang T, Zhou J, Zhang HZ, Sun SS, Gao MX, Huang CZ. Photoinduced electron transfer process visualized on single silver nanoparticles. ACS Nano. 2017;11:2085–93.

    Article  CAS  PubMed  Google Scholar 

  50. Xu D, Liu D, Xie T, Cao Y, Wang J-G, Ning Z-j, Long Y-T, Tian H. Plasmon resonance scattering at perovskite CH 3 NH 3 PbI 3 coated single gold nanoparticles: evidence for electron transfer. Chem Commun. 2016;52:9933–6.

    Article  CAS  Google Scholar 

  51. Li Z, Fang Y, Wang Y, Jiang Y, Liu T, Wang W. Visualizing the bidirectional electron transfer in a Schottky junction consisting of single CdS nanoparticles and a planar gold film. Chem Sci. 2017;8:5019–23.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  52. Pereira MLO, Grasseschi D, Toma HE. Photocatalytic activity of reduced graphene oxide–gold nanoparticle nanomaterials: interaction with asphaltene and conversion of a model compound. Energy Fuel. 2017;32:2673–80.

    Article  CAS  Google Scholar 

  53. Li S, Du Y, He T, Shen Y, Bai C, Ning F, Hu X, Wang W, Xi S, Zhou X. Nanobubbles: an effective way to study gas-generating catalysis on a single nanoparticle. J Am Chem Soc. 2017;139:14277–84.

    Article  CAS  PubMed  Google Scholar 

  54. Jing C, Rawson FJ, Zhou H, Shi X, Li W-H, Li D-W, Long Y-T. New insights into electrocatalysis based on plasmon resonance for the real-time monitoring of catalytic events on single gold nanorods. Anal Chem. 2014;86:5513–8.

    Article  CAS  PubMed  Google Scholar 

  55. Jing C, Gu Z, Long Y-T. Imaging electrocatalytic processes on single gold nanorods. Faraday Discuss. 2016;193:371–85.

    Article  CAS  PubMed  Google Scholar 

  56. Wonner K, Evers MV, Tschulik K. Simultaneous opto-and spectro-electrochemistry: reactions of individual nanoparticles uncovered by dark-field microscopy. J Am Chem Soc. 2018;140:12658.

    Article  CAS  PubMed  Google Scholar 

  57. Badireddy AR, Wiesner MR, Liu J. Detection, characterization, and abundance of engineered nanoparticles in complex waters by hyperspectral imagery with enhanced darkfield microscopy. Environ Sci Technol. 2012;46:10081–8.

    Article  CAS  PubMed  Google Scholar 

  58. Théoret T, Wilkinson KJ. Evaluation of enhanced darkfield microscopy and hyperspectral analysis to analyse the fate of silver nanoparticles in wastewaters. Anal Methods. 2017;9:3920–8.

    Article  Google Scholar 

  59. Mortimer M, Gogos A, Bartolomé N, Kahru A, Bucheli TD, Slaveykova VI. Potential of hyperspectral imaging microscopy for semi-quantitative analysis of nanoparticle uptake by protozoa. Environ Sci Technol. 2014;48:8760–7.

    Article  CAS  PubMed  Google Scholar 

  60. Sekine R, Moore KL, Matzke M, Vallotton P, Jiang H, Hughes GM, Kirby JK, Donner E, Grovenor CR, Svendsen C. Complementary imaging of silver nanoparticle interactions with green algae: dark-field microscopy, electron microscopy, and nanoscale secondary ion mass spectrometry. ACS Nano. 2017;11:10894–902.

    Article  CAS  PubMed  Google Scholar 

  61. Avellan A, Schwab F, Masion A, Chaurand P, Borschneck D, Vidal V, Rose J, Santaella C, Levard CM. Nanoparticle uptake in plants: gold nanomaterial localized in roots of Arabidopsis thaliana by X-ray computed nanotomography and hyperspectral imaging. Environ Sci Technol. 2017;51:8682–91.

    Article  CAS  PubMed  Google Scholar 

  62. Mehta N, Shaik S, Devireddy R, Gartia MR. Single-cell analysis using hyperspectral imaging modalities. J Biomech Eng. 2018;140:020802.

    Article  Google Scholar 

  63. More SS, Beach JM, Vince R. Early detection of amyloidopathy in Alzheimer’s mice by hyperspectral endoscopy. Invest Ophthalmol Vis Sci. 2016;57:3231–8.

    Article  CAS  PubMed  Google Scholar 

  64. Fu D, Yang W, Xie XS. Label-free imaging of neurotransmitter acetylcholine at neuromuscular junctions with stimulated Raman scattering. J Am Chem Soc. 2016;139:583–6.

    Article  PubMed  CAS  Google Scholar 

  65. Sorg BS, Moeller BJ, Donovan O, Cao Y, Dewhirst MW. Hyperspectral imaging of hemoglobin saturation in tumor microvasculature and tumor hypoxia development. J Biomed Opt. 2005;10:044004.

    Article  CAS  Google Scholar 

  66. Misra SK, Ostadhossein F, Daza E, Johnson EV, Pan D. Hyperspectral imaging offers visual and quantitative evidence of drug release from zwitterionic-phospholipid-nanocarbon when concurrently tracked in 3D intracellular space. Adv Funct Mater. 2016;26:8031–41.

    Article  CAS  Google Scholar 

  67. Gosnell ME, Anwer AG, Mahbub SB, Perinchery SM, Inglis DW, Adhikary PP, Jazayeri JA, Cahill MA, Saad S, Pollock CA. Quantitative non-invasive cell characterisation and discrimination based on multispectral autofluorescence features. Sci Rep. 2016;6:23453.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  68. Chin JA, Wang EC, Kibbe MR. Evaluation of hyperspectral technology for assessing the presence and severity of peripheral artery disease. J Vasc Surg. 2011;54:1679–88.

    Article  PubMed  Google Scholar 

  69. Larsen EL, Randeberg LL, Aksnes A, Svaasand LO, Olstad E, Haugen OA. Hyperspectral imaging of atherosclerotic plaques in vitro. J Biomed Opt. 2011;16:026011.

    Article  PubMed  Google Scholar 

  70. Greenman RL, Panasyuk S, Wang X, Lyons TE, Dinh T, Longoria L, Giurini JM, Freeman J, Khaodhiar L, Veves A. Early changes in the skin microcirculation and muscle metabolism of the diabetic foot. Lancet. 2005;366:1711–7.

    Article  CAS  PubMed  Google Scholar 

  71. Liu L, Ngadi M. Detecting fertility and early embryo development of chicken eggs using near-infrared hyperspectral imaging. Food Bioprocess Technol. 2013;6:2503–13.

    Article  Google Scholar 

  72. Chaudhari K, Pradeep T. Spatiotemporal mapping of three dimensional rotational dynamics of single ultrasmall gold nanorods. Sci Rep. 2014;4:5948.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  73. Johnson WR, Wilson DW, Fink W, Humayun MS, Bearman GH. Snapshot hyperspectral imaging in ophthalmology. J Biomed Opt. 2007;12:014036.

    Article  PubMed  Google Scholar 

  74. Usenik P, Bürmen M, Fidler A, Pernuš F, Likar B. Evaluation of cross-polarized near infrared hyperspectral imaging for early detection of dental caries. In: Lasers in dentistry XVIII. Bellingham, WA: International Society for Optics and Photonics; 2012. p. 82080G.

    Chapter  Google Scholar 

  75. Li Q, Wang Y, Liu H, Chen Z. Nerve fibers identification based on molecular hyperspectral imaging technology. In: Computer Science and Automation Engineering (CSAE), 2012 IEEE International Conference on. Washington, DC: IEEE; 2012. p. 15–7.

    Google Scholar 

  76. Benavides JM, Chang S, Park SY, Richards-Kortum R, Mackinnon N, MacAulay C, Milbourne A, Malpica A, Follen M. Multispectral digital colposcopy for in vivo detection of cervical cancer. Opt Express. 2003;11:1223–36.

    Article  PubMed  Google Scholar 

  77. Kong SG, Martin ME, Vo-Dinh T. Hyperspectral fluorescence imaging for mouse skin tumor detection. ETRI J. 2006;28:770–6.

    Article  Google Scholar 

  78. Panasyuk SV, Yang S, Faller DV, Ngo D, Lew RA, Freeman JE, Rogers AE. Medical hyperspectral imaging to facilitate residual tumor identification during surgery. Cancer Biol Ther. 2007;6:439–46.

    Article  PubMed  Google Scholar 

  79. Akbari H, Uto K, Kosugi Y, Kojima K, Tanaka N. Cancer detection using infrared hyperspectral imaging. Cancer Sci. 2011;102:852–7.

    Article  CAS  PubMed  Google Scholar 

  80. Akbari H, Halig L, Schuster DM, Fei B, Osunkoya A, Master V, Nieh P, Chen G. Hyperspectral imaging and quantitative analysis for prostate cancer detection. J Biomed Opt. 2012;17:076005.

    Article  PubMed  PubMed Central  Google Scholar 

  81. Renkoski TE, Utzinger U, Hatch KD. Wide-field spectral imaging of human ovary autofluorescence and oncologic diagnosis via previously collected probe data. J Biomed Opt. 2012;17:036003.

    Article  PubMed  PubMed Central  CAS  Google Scholar 

  82. Afromowitz MA, Callis JB, Heimbach DM, DeSoto LA, Norton MK. Multispectral imaging of burn wounds: a new clinical instrument for evaluating burn depth. IEEE Trans Biomed Eng. 1988;35:842–50.

    Article  CAS  PubMed  Google Scholar 

  83. Siddiqi AM, Li H, Faruque F, Williams W, Lai K, Hughson M, Bigler S, Beach J, Johnson W. Use of hyperspectral imaging to distinguish normal, precancerous, and cancerous cells. Cancer Cytopathol Interdiscipl Intl J Am Cancer Soc. 2008;114:13–21.

    Google Scholar 

  84. Vetten MA, Tlotleng N, Rascher DT, Skepu A, Keter FK, Boodhia K, Koekemoer L-A, Andraos C, Tshikhudo R, Gulumian M. Label-free in vitro toxicity and uptake assessment of citrate stabilised gold nanoparticles in three cell lines. Part Fibre Toxicol. 2013;10:50.

    Article  PubMed  PubMed Central  Google Scholar 

  85. Weinkauf H, Brehm-Stecher BF. Enhanced dark field microscopy for rapid artifact-free detection of nanoparticle binding to Candida albicans cells and hyphae. Biotechnol J Healthcare Nutr Technol. 2009;4:871–9.

    CAS  Google Scholar 

  86. Zuzak KJ, Naik SC, Alexandrakis G, Hawkins D, Behbehani K, Livingston EH. Characterization of a near-infrared laparoscopic hyperspectral imaging system for minimally invasive surgery. Anal Chem. 2007;79:4709–15.

    Article  CAS  PubMed  Google Scholar 

  87. Schols RM, Bouvy ND, van Dam RM, Stassen LP. Advanced intraoperative imaging methods for laparoscopic anatomy navigation: an overview. Surg Endosc. 2013;27:1851–9.

    Article  PubMed  Google Scholar 

  88. Akbari H, Kosugi Y, Kojima K, Tanaka N. Detection and analysis of the intestinal ischemia using visible and invisible hyperspectral imaging. IEEE Trans Biomed Eng. 2010;57:2011–7.

    Article  PubMed  Google Scholar 

  89. Akbari H, Kosugi Y, Kojima K, Tanaka N. Wavelet-based compression and segmentation of hyperspectral images in surgery. In: International Workshop on Medical Imaging and Virtual Reality. New York, NY: Springer; 2008. p. 142–9.

    Google Scholar 

  90. Akbari H, Kosugi Y, Kojima K, Tanaka N. Hyperspectral imaging and diagnosis of intestinal ischemia, Engineering in Medicine and Biology Society. In: EMBS 2008. 30th Annual International Conference of the IEEE. Washington, DC: IEEE; 2008. p. 1238–41.

    Google Scholar 

  91. Cha J, Broch A, Mudge S, Kim K, Namgoong J-M, Oh E, Kim P. Real-time, label-free, intraoperative visualization of peripheral nerves and micro-vasculatures using multimodal optical imaging techniques. Biomed Opt Express. 2018;9:1097–110.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Acknowledgements

MRG thanks the support from Louisiana Board of Regents RCS grant (Contract Number: LEQSF (2017-20)-RD-A-04), National Science Foundation (Award Number: 1660233), and Louisiana State University start-up funds.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Manas Ranjan Gartia .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2021 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Mehta, N., Sahu, S., Shaik, S., Devireddy, R., Gartia, M.R. (2021). Dark-Field Hyperspectral Imaging (DF-HSI) Modalities for Characterization of Single Molecule and Cellular Processes. In: Zhao, X., Lu, M. (eds) Nanophotonics in Biomedical Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-6137-5_8

Download citation

Publish with us

Policies and ethics