Skip to main content

Finding an Approximate Global Optimum of Characteristic Objects Preferences by Using Simulated Annealing

  • Conference paper
  • First Online:
Intelligent Decision Technologies (IDT 2020)

Part of the book series: Smart Innovation, Systems and Technologies ((SIST,volume 193))

Included in the following conference series:

Abstract

Random processes are increasingly becoming a topic of consideration in many areas where decision-making is an important factor. The random factor affects the difficulty of determining input parameters. The selection of these parameters can be a key element in achieving the correct results. Stochastic optimization methods can be used to solve this problem. In this article, the simulated annealing method was used to obtain an optimal solution, which then, in combination with the COMET method, provided satisfactory results by determining the relationship between the preferences of the initial alternatives and newly identified alternatives. The purpose of this study was to systematize the knowledge of effective selection of input parameters for stochastic methods. The obtained solution indicates how to select a grid to an unknown problem and how to select a step in the simulated annealing method to achieve more precise results.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Hardcover Book
USD 219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

References

  1. Adler, D.: Genetic algorithms and simulated annealing: a marriage proposal. In: IEEE International Conference on Neural Networks, pp. 1104–1109. IEEE (1993)

    Google Scholar 

  2. Boender, C.G.E., De Graan, J.G., Lootsma, F.A.: Multi-criteria decision analysis with fuzzy pairwise comparisons. Fuzzy Sets Syst. 29(2), 133–143 (1989)

    Article  MathSciNet  Google Scholar 

  3. Davis, L.: Genetic algorithms and simulated annealing (1987)

    Google Scholar 

  4. Deschrijver, G., Kerre, E.E.: On the relationship between some extensions of fuzzy set theory. Fuzzy Sets Syst. 133(2), 227–235 (2003)

    Article  MathSciNet  Google Scholar 

  5. Faizi, S., Sałabun, W., Rashid, T., Watróbski, J., Zafar, S.: Group decision-making for hesitant fuzzy sets based on characteristic objects method. Symmetry 9(8), 136 (2017)

    Article  MathSciNet  Google Scholar 

  6. Faizi, S., Rashid, T., Sałabun, W., Zafar, S., Watróbski, J.: Decision making with uncertainty using hesitant fuzzy sets. Int. J. Fuzzy Syst. 20(1), 93–103 (2018)

    Article  MathSciNet  Google Scholar 

  7. Guitouni, A., Martel, J.M.: Tentative guidelines to help choosing an appropriate MCDA method. Eur. J. Oper. Res. 109(2), 501–521 (1998)

    Article  Google Scholar 

  8. Gupta, M.M., Qi, J.: Theory of T-norms and fuzzy inference methods. Fuzzy Sets Syst. 40(3), 431–450 (1991)

    Article  MathSciNet  Google Scholar 

  9. Kirkpatrick, S., Gelatt, C.D., Vecchi, M.P.: Optimization by simulated annealing. Science 220(4598), 671–680 (1983)

    Article  MathSciNet  Google Scholar 

  10. Kirkpatrick, S.: Optimization by simulated annealing: quantitative studies. J. Stat. Phys. 34(5–6), 975–986 (1984)

    Article  MathSciNet  Google Scholar 

  11. Van Laarhoven, P.J., Aarts, E.H., Lenstra, J.K.: Job shop scheduling by simulated annealing. Oper. Res. 40(1), 113–125 (1992)

    Article  MathSciNet  Google Scholar 

  12. Łokietek, T., Jaszczak, S., Nikończuk, P.: Optimization of control system for modified configuration of a refrigeration unit. Procedia Comput. Sci. 159, 2522–2532 (2019)

    Article  Google Scholar 

  13. Nikończuk, P.: Preliminary modeling of overspray particles sedimentation at heat recovery unit in spray booth. Eksploatacja i Niezawodność 20, 387–393 (2018)

    Article  Google Scholar 

  14. Piegat, A.: Fuzzy Modeling and Control (Studies in Fuzziness and Soft Computing). Physica 742 (2001)

    Google Scholar 

  15. Piegat, A., Sałabun, W.: Nonlinearity of human multi-criteria in decision-making. J. Theor. Appl. Comput. Sci. 6(3), 36–49 (2012)

    Google Scholar 

  16. Roubens, M.: Fuzzy sets and decision analysis. Fuzzy Sets Syst. 90(2), 199–206 (1997)

    Article  MathSciNet  Google Scholar 

  17. Sałabun, W.: The characteristic objects method: a new distance-based approach to multicriteria decision-making problems. J. Multi-Criteria Decis. Anal. 22(1–2), 37–50 (2015)

    Article  Google Scholar 

  18. Sałabun, W., Karczmarczyk, A., Watróbski, J.: Decision-making using the hesitant fuzzy sets COMET method: an empirical study of the electric city buses selection. In: 2018 IEEE Symposium Series on Computational Intelligence (SSCI), pp. 1485–1492. IEEE (2018)

    Google Scholar 

  19. Sałabun, W., Palczewski, K., Watróbski, J.: Multicriteria approach to sustainable transport evaluation under incomplete knowledge: electric bikes case study. Sustainability 11(12), 3314 (2019)

    Article  Google Scholar 

  20. Sałabun, W., Piegat, A.: Comparative analysis of MCDM methods for the assessment of mortality in patients with acute coronary syndrome. Artif. Intell. Rev. 48(4), 557–571 (2017)

    Article  Google Scholar 

  21. Watróbski, J., Jankowski, J.: Knowledge management in MCDA domain. In: 2015 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 1445–1450. IEEE (2015)

    Google Scholar 

  22. Watróbski, J., Jankowski, J., Ziemba, P., Karczmarczyk, A., Zioło, M.: Generalised framework for multi-criteria method selection. Omega 86, 107–124 (2019)

    Article  Google Scholar 

  23. Wątróbski, J., Sałabun, W.: The characteristic objects method: a new intelligent decision support tool for sustainable manufacturing. In: International Conference on Sustainable Design and Manufacturing, pp. 349–359. Springer, Cham (2016)

    Google Scholar 

  24. Watróbski, J., Sałabun, W.: Green supplier selection framework based on multi-criteria decision-analysis approach. In: International Conference on Sustainable Design and Manufacturing, pp. 361–371. Springer, Cham (2016)

    Google Scholar 

  25. Watróbski, J., Sałabun, W., Karczmarczyk, A., Wolski, W.: Sustainable decision-making using the COMET method: an empirical study of the ammonium nitrate transport management. In: 2017 Federated Conference on Computer Science and Information Systems (FedCSIS), pp. 949–958. IEEE (2017)

    Google Scholar 

  26. Zadeh, L.A.: Information and control. Fuzzy Sets 8(3), 338–353 (1965)

    Google Scholar 

  27. Zimmermann, H.J.: Fuzzy Set Theory and its Applications. Springer Science & Business Media (2011)

    Google Scholar 

Download references

Acknowledgements

The work was supported by the National Science Centre, Decision No. DEC-2016/23/N/HS4/01931.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Jakub Więckowski .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 The Editor(s) (if applicable) and The Author(s), under exclusive license to Springer Nature Singapore Pte Ltd.

About this paper

Check for updates. Verify currency and authenticity via CrossMark

Cite this paper

Więckowski, J., Kizielewicz, B., Kołodziejczyk, J. (2020). Finding an Approximate Global Optimum of Characteristic Objects Preferences by Using Simulated Annealing. In: Czarnowski, I., Howlett, R., Jain, L. (eds) Intelligent Decision Technologies. IDT 2020. Smart Innovation, Systems and Technologies, vol 193. Springer, Singapore. https://doi.org/10.1007/978-981-15-5925-9_31

Download citation

Publish with us

Policies and ethics