Skip to main content

Improving Water Use Efficiency and Nitrogen Use Efficiency in Rice Through Breeding and Genomics Approaches

  • Chapter
  • First Online:
Rice Research for Quality Improvement: Genomics and Genetic Engineering

Abstract

Rice is a staple food of more than half of the world’s population; more than 3.5 billion inhabitants depend on rice for obtaining 20% of their daily calorie intake. Nitrogen is the most important for crop growth and yield potential. Indeed, nitrogen is essential to stimulate tillering, leaf growth, photosynthesis, and protein synthesis. Significant achievements have recently been observed at the molecular level in nitrogen use efficiency and water use efficiency in plants. In this chapter we will discuss the following issue: (i) definition of both nitrogen use efficiency and water use efficiency, (ii) genes responsible for nitrogen use efficiency and water use efficiency, (iii) best ways for improving water and nutrient use efficiency in rice, and (iv) optimizing nitrogen options for improving water and nitrogen use efficiency of rice under different water regimes.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 259.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 329.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 329.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Adriano DC (2001) Trace elements in terrestrial environments: biogeochemistry bioavailability, and risks of metals, 2nd edn. Springer-Verlag, New York

    Google Scholar 

  • Alberto MCR, Wassmann R, Hirano T et al (2011) Comparisons of energy balance and evapotranspiration between flooded and aerobic rice fields in the Philippines. Agric Water Manag 98:1417–1430

    Google Scholar 

  • Alloway BJ (2008) Zinc in soils and crop nutrition, 2nd edn. International Zinc Association, Brussels

    Google Scholar 

  • Anand N, Shantha KH (1986) Blue-green algae from several rice field in Kerala state, India. Hydrobiologia 144:223–227

    Google Scholar 

  • Araki R, Hasegawa H (2006) Expression of rice (Oryza sativa L.) genes involved in high-affinity nitrate transport during the period of nitrate induction. Breed Sci 56(3):295–302. https://doi.org/10.1270/jsbbs.56.295

    Article  CAS  Google Scholar 

  • Balasubramanian V, Makarim AK, Karthamadtja S et al (2002) Integrated resource management in Asian rice farming for enhanced profitability, efficiency and environmental protection. Poster paper presented at the First International Rice Congress, Beijing, 15–19 September 2002, IRRI, LosBan˜os, Philippines

    Google Scholar 

  • Baldani JI, Baldani V, Seldin L et al (1986) Characterization of herb aspirillum seropedicae gen. nov., sp. nov., a root-associated nitrogen-fixing bacterium. Int J Syst Evol Micrbiol 36(1):86–93

    CAS  Google Scholar 

  • Baldani VLD, Baldani JI, Bereiner DJ (2000) Inoculation of rice plants with the endophytic diazotrophs herb aspirillum seropedicae and Burkholderia spp. Biol Fertil Soils 30:485–491

    Google Scholar 

  • Barker R, Dawe D, Tuong TP et al (1999) Assessment and orientation towards the 21st century. FAO, Rome, pp 96–109

    Google Scholar 

  • Bates BC, Kundzewicz ZW, Wu S et al (2008) Climate change and water. Technical paper of the intergovernmental panel on climate change, IPCC secretariat, Geneva. Clim Chg Pol Ren Environ Ethic 21:85–101

    Google Scholar 

  • Belder P, Bouman BAM, Cabangon R et al (2004) Effect of water-saving irrigation on rice yield and water use in typical lowland conditions in Asia. Agric Water Manag 65(3):193–210

    Google Scholar 

  • Bell DW, Dell B (2008) Micronutrients for sustainable food, feed, fiber and bio-energy products. International Fertiliser Industry Association, Paris, p 175

    Google Scholar 

  • Bharti K, Mohanty SR, Padmavathi PVL et al (2000) Influence of six nitrification inhibitors on methane production in a flooded alluvial soil. Nutr Cycl Agroecosyst 58:389–394

    Google Scholar 

  • Bhattacharyya R, Ghosh BN, Mishra PK et al (2015) Soil degradation in India: challenges and potential solutions. Sustainability (special issue: soil-degradation) 7(4):3528–3570

    CAS  Google Scholar 

  • Bouman BAM, Tuong TP (2001) Field water management to save water and increase its productivity in irrigated lowland rice. Agric Water Manag 49:11–30

    Google Scholar 

  • Cabangon RJ, Tuong TP, Castillo EG et al (2004) Effect of irrigation method and N-fertilizer management on rice yield, water productivity and nutrient-use efficiencies in typical lowland rice conditions in China. Paddy Water Environ 2:195–206

    Google Scholar 

  • Cakmak I (2002) Plant nutrition research: priorities to meet human needs for food in sustainable ways. Plant Soil 247:3–24

    CAS  Google Scholar 

  • Cakmak I (2004) Identification and correction of wide spread zinc deficiency in Turkey-a success story. The International Fertiliser Society, York, UK

    Google Scholar 

  • Cakmak I (2008) Enrichment of cereal grains with zinc: agronomic or genetic bio-fortification? Plant Soil 302:1–17

    CAS  Google Scholar 

  • Cao X, Zhong C, Sajid H et al (2017) Effects of watering regime and nitrogen application rate on the photosynthetic parameters, physiological characteristics, and agronomic traits of rice. Acta Physiol Plant 39(135):1–12

    Google Scholar 

  • Cassman KG, Gines HC, Dizon MA et al (1996) Nitrogen-use efficiency in tropical lowland rice: contributions from indigenous and applied nitrogen. Field Crop Res 47:1–12

    Google Scholar 

  • Cassman KG, Harwood RR (1995) The nature of agricultural systems: food security and environmental balance. Food Policy 20:439–454

    Google Scholar 

  • Chauhan BS, Mahajan G, Sardana V et al (2012) Productivity and sustainability of the rice-wheat cropping system in the indo-gangetic plains of the Indian subcontinent: problems, opportunities and strategies. Adv Agron 117:315–369. https://doi.org/10.1016/B978-0-12-394278-4.00006-4

    Article  CAS  Google Scholar 

  • Chen J, Huang Y, Tang Y (2011) Quantifying economically and ecologically optimum nitrogen rates for rice production in South-Eastern China. Agric Ecosyst Environ 142:195–204

    Google Scholar 

  • Chi F, Shen SH, Cheng HP et al (2005) Ascending migration of endophytic rhizobia, from roots to leaves, inside rice plants and assessment of benefits to rice growth physiology. Appl Environ Microbiol 71:7271–7278

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ciss M, Vlek PLG (2003) Influence of urea on biological N2 fixation and N transfer from Azolla intercropped with rice. Plant Soil 250:105–112

    Google Scholar 

  • Condon AG, Richards RA (1993) Exploiting genetic variation in transpiration efficiency in wheat: an agronomic view. In: Ehleringer JR, Hall AE, Farquhar GD (eds) Stable isotopes and plant carbon water relations. Academic Press, San Diego, CA, pp 435–450

    Google Scholar 

  • Cordell D, Drangert JO, White S (2009) The story of phosphorus: global food security and food for thought. Glob Environ Chang 19:292–305

    Google Scholar 

  • Cu RM, Mew TW, Cassman KG et al (1996) Effect of sheath blight on yield in tropical, intensive rice production system. Plant Dis 80:1103–1108

    Google Scholar 

  • De PK, Fritsch FE (1939) The role of blue-green algae in nitrogen fixation in rice-fields. Proc R Soc Lond B 127. https://doi.org/10.1098/rspb.1939.0014

  • De-Datta SK, Buresh RJ (1989) Integrated nitrogen management in irrigated rice. Adv Soil Sci 10:143–169

    Google Scholar 

  • Deng F, Wang L, Ren WJ et al (2014) Enhancing nitrogen utilization and soil nitrogen balance in paddy fields by optimizing nitrogen management and using polyaspartic acid urea. Field Crop Res 169:30–38

    Google Scholar 

  • Diaz C, Lemaître T, Christ A et al (2004) Increasing productivity of intensive rice systems through site-specific nutrient management. Science Publishers, Inc., International Rice Research Institute, Enfield, NH and Los Banos

    Google Scholar 

  • Diaz RJ, Rosenberg R (2008) Spreading dead zones and consequences for marine ecosystems. Science 321:926–929

    CAS  PubMed  Google Scholar 

  • Evans RG, Sadler EJ (2008) Methods and technologies to improve efficiency of water use. Water Resour Res. https://doi.org/10.1029/2007WR006200

  • Fageria NK, Baligar VC (2003) Methodology for evaluation of lowland rice genotypes for nitrogen use efficiency. J Plant Nutr 26:1315–1333

    CAS  Google Scholar 

  • Fageria NK, Baligar VC (2005) Enhancing nitrogen use efficiency in crop plants. Adv Agron 88:97–185

    CAS  Google Scholar 

  • Fan M, Lu S, Jiang R et al (2009) Triangular transplanting pattern and split nitrogen fertilizer application increase rice yield and nitrogen fertilizer recovery. Agron J 101:1421–1425

    CAS  Google Scholar 

  • Fang ZM, Xia KF, Yang X (2013) Altered expression of the PTR/NRT1 homologue OsPTR9 affects nitrogen utilization efficiency, growth and grain yield in rice. Plant Biotechnol J 11:446–458. https://doi.org/10.1111/pbi.12031

    Article  CAS  PubMed  Google Scholar 

  • Feng H, Yan M, Fan X et al (2011) Spatial expression and regulation of rice high-affinity nitrate transporters by nitrogen and carbon status. J Exp Bot 62(7):2319–2332. https://doi.org/10.1093/jxb/erq403

    Article  CAS  PubMed  Google Scholar 

  • Fischer KS (1998) Toward increasing nutrient-use efficiency in rice cropping systems: the next generation of technology. Field Crop Res 56(1–2):1–6

    Google Scholar 

  • Frank R, Ishida K, Suda P (1976) Metals in agricultural soils of Ontario. Can J Soil Sci 56:191–196

    Google Scholar 

  • Gallais A, Coque M, Quilléré I et al (2006) Modelling postsilking nitrogen fluxes in maize (Zea mays) using 15 N-labelling field experiments. New Phytol 172(4):696–707. https://doi.org/10.1111/j.1469-8137.2006.01890.x

    Article  CAS  PubMed  Google Scholar 

  • Gangloff WJ, Westfall DG, Peterson GA et al (2002) Relative availability coefficients of organic and inorganic Zn fertilizers. J Plant Nutr 25:259–273

    CAS  Google Scholar 

  • Gangloff WJ, Westfall DG, Peterson GA et al (2006) Mobility of organic and inorganic zinc fertilizers in soils. Commun Soil Sci Plant Anal 37:199–209

    CAS  Google Scholar 

  • Geethalakshmi V, Ramesh T, Palamuthirsolai A et al (2011) Agronomic evaluation of rice cultivation systems for water and grain productivity. Arch Agron Soil Sci 57(2):159–166

    Google Scholar 

  • Gibson RS (2012) Zinc deficiency and human health: etiology, health consequences and future solutions. Plant Soil 361:291–299

    CAS  Google Scholar 

  • Giller KE, Chalk PM, Dobermann A et al (2004) Emerging technologies to increase the efficiency of use of fertilizer nitrogen. In: Mosier AR, Syers JK, Freney JR (eds) Agriculture and the nitrogen cycle: assessing the impacts of fertilizer use on food production and the environment, Paris, France. Island Press, Washington, DC, pp 35–51

    Google Scholar 

  • Godfray HCJ, Beddington JR, Crute IR et al (2010) Food security: the challenge of feeding 9 billion people. Science 327:812–818

    CAS  PubMed  Google Scholar 

  • Gopalakrishnan S, Kumar RM, Humayun P et al (2014) Assessment of different methods of rice (Oryza sativa L) cultivation affecting growth parameters, soil chemical, biological, and microbiological properties, water saving, and grain yield in rice-rice system. Paddy Water Environ 12(1):79–87

    Google Scholar 

  • Graham RD, Knez M, Welch RM (2012) How much nutrient iron deficiency in humans globally is due to underlying zinc deficiency? Adv Agron 115:1–40

    CAS  Google Scholar 

  • Guo JH, Liu XJ, Zhang Y et al (2010) Significant acidification in major Chinese croplands. Science 327:1008–1010

    CAS  PubMed  Google Scholar 

  • Haefele S, Jabbar S, Siopongca J et al (2008) Nitrogen use efficiency in selected rice (Oryza sativa L.) genotypes under different water regimes and nitrogen levels. Field Crop Res 107:137–146

    Google Scholar 

  • Hall AE (2005) Water use efficiency in plant biology. Crop Sci 45(2):809-a. https://doi.org/10.2135/cropsci2005.0809a

  • Hamdy A, Ragab R, Scarascia-Mugnozza E (2003) Coping with water scarcity: water saving and increasing water productivity. Irrig Drain 52:3–20

    Google Scholar 

  • Hameed F, Xu J, Rahim SF et al (2019) Optimizing nitrogen options for improving nitrogen use efficiency of rice under different water regimes. Agronomy 9:39

    Google Scholar 

  • Hazra GC, Mandal P, Mandal LN (1987) Distribution of zinc fractions and their transformation in rice soils. Plant Soil 104:175–181

    CAS  Google Scholar 

  • Hira GS, Jalota SK (2009) Water management in northern states and the food security in India. J Crop Improv 23:136–157

    Google Scholar 

  • Hira GS, Jalota SK, Arora VK (2004) Efficient management of water resources for sustainable cropping in Punjab. Research Bulletin, Department of Soils, Punjab Agricultural University, Ludhiana, pp 22–30

    Google Scholar 

  • Huang S, Zhao C, Zhang Y et al (2018) Nitrogen use efficiency in rice. In: Nitrogen in agriculture-updates. InTech. https://doi.org/10.5772/intechopen.69052

    Chapter  Google Scholar 

  • Hunter AH (1975) New techniques and equipment for routine plant analysis procedure. In: Bronemisza E, Alvarado A (eds) Soil management in tropical America. North Carolina State University, Raleigh, NC, pp 467–483

    Google Scholar 

  • International Fertilizer Agency (IFA) (2007) Help eliminate the fifth leading disease risk factor in developing countries. In: Sukalac KE (ed) Fertilizer and agriculture. IFA, Paris, pp 1–8

    Google Scholar 

  • IRRI, Africa Rice, and CIAT (2010) Global Rice Science Partnership (GRiSP). November 2010

    Google Scholar 

  • Ito O, Watanabe I (1985) Availability to rice plants of nitrogen fixed by Azolla. Soil Sci Plant Nutr 31:91–104

    CAS  Google Scholar 

  • Jalota SK, Sood A, Chahal GBS et al (2006) Crop water productivity of cotton (Gossypium hirsutum L.)–wheat (Triticum aestivum L.) system as influenced by deficit irrigation, soil texture and precipitation. Agric Water Manag 84(1–2):137–146

    Google Scholar 

  • Jeong H, Jang T, Seong C et al (2014) Assessing nitrogen fertilizer rates and split applications using the DSSAT model for rice irrigated with urban wastewater. Agric Water Manag 141:1–9

    Google Scholar 

  • Jing Q, Bouman BAM, Hengsdijk H et al (2007) Exploring options to combine high yields with high nitrogen use efficiencies in irrigated rice in China. Eur J Agron 26:166–177

    CAS  Google Scholar 

  • Karak T, Singh UK, Das S et al (2005) Comparative efficacy of ZnSO4 and Zn-EDTA application for fertilization of rice (Oryza sativa L.). Arch Agron Soil Sci 51:253–264

    CAS  Google Scholar 

  • Kaushik BD (1989) Reclamation potential of Cyanobacteria in salt affected soils. Phykos 28:101–109

    CAS  Google Scholar 

  • Khush GS (2005) What it will take to feed 5.0 billion rice consumers in 2030. Plant Mol Biol 59:1–6

    CAS  PubMed  Google Scholar 

  • Kiba T, Krapp A (2016) Plant nitrogen acquisition under low availability: regulation of uptake and root architecture. Plant Cell Physiol. Oxford University Press. https://doi.org/10.1093/pcp/pcw052

  • Kichey T, Hirel B, Heumez E et al (2007) In winter wheat (Triticum aestivum L.), post-anthesis nitrogen uptake and remobilisation to the grain correlates with agronomic traits and nitrogen physiological markers. Field Crop Res 102:22–32

    Google Scholar 

  • Krishna VV, Byju NG, Tamizheniyan S (2002) Integrated pest management in Indian agriculture: a developing economy perspective. In: Radcliffe EB, Hutchison WD, Cancelado RE (eds) Radcliffe’s IPM world textbook. University of Minnesota, St. Paul, MN, pp 612–624

    Google Scholar 

  • Kumar P, Joshi PK, Brithal PS (2009) Demand projections for food grains in India. Agric Econ Res Rev 22:237–243

    Google Scholar 

  • Kumar R, Gopal R, Jat ML et al (2010) Conservation agriculture-based strategies for sustainable weed management in maize. Training manual, Maize for Freshers, Directorate of Maize Research, New Delhi, India

    Google Scholar 

  • Ladha JK, Kirk GJD, Bennett J et al (1998) Opportunities for increased nitrogen-use efficiency from improved lowland rice germplasm. Field Crop Res 56:41–71

    Google Scholar 

  • Ladha JK, Reddy PM (2003) Nitrogen fixation in rice systems: state of knowledge and future prospects. Plant Soil 262:151–167

    Google Scholar 

  • Lam HM, Coschigano KT, Oliveira IC et al (1996) The molecular-genetics of nitrogen assimilation into amino acids in higher plants. Annu Rev Plant Physiol Plant Mol Biol 47(1):569–593. https://doi.org/10.1146/annurev.arplant.47.1.569

    Article  CAS  PubMed  Google Scholar 

  • Lam HM, Wong P, Chan H et al (2003) Overexpression of the ASN1 gene enhances nitrogen status in seeds of Arabidopsis. Plant Physiol 132(2):926–935. https://doi.org/10.1104/pp.103.020123

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Lessman GM, Ellis BJ (1971) Response of Phaseolus vulgaris to zinc level as influenced by phosphorus level and source. Soil Sci Soc Am Proc 35:935–938

    CAS  Google Scholar 

  • Lezhneva L, Kiba T, Feria-Bourrellier AB et al (2014) The Arabidopsis nitrate transporter NRT2.5 plays a role in nitrate acquisition and remobilization in nitrogen-starved plants. Plant J 80:230–241

    CAS  PubMed  Google Scholar 

  • Li H, Hu B, Chu C (2017) Nitrogen use efficiency in crops: lessons from Arabidopsis and rice. J Exp Bot. Oxford University Press. https://doi.org/10.1093/jxb/erx101

  • Li Y (2006) Water saving irrigation in China. Irrig Drain 55(3):327–336

    CAS  Google Scholar 

  • Lindsay WL, Norvell WA (1978) Development of DTPA soil test for zinc, iron, manganese and copper. Soil Sci Soc Am J 42:421–428

    CAS  Google Scholar 

  • Madhusoodhanan CG, Sreeja KG, Eldho TI (2016) Climate change impact assessments on the water resources of India under extensive human interventions. Ambio 45(6):725–741

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mae T (1997) Physiological nitrogen efficiency in rice: nitrogen utilization, photosynthesis, and yield potential. Plant Soil 196:201–210

    CAS  Google Scholar 

  • Mall RK, Gupta A, Singh R et al (2006) Water resources and climate change: an Indian perspective. Curr Sci 90(12):1610–1626

    Google Scholar 

  • Masclaux-Daubresse C, Daniel-Vedele F, Dechorgnat J et al (2010) Nitrogen uptake, assimilation and remobilization in plants: challenges for sustainable and productive agriculture. Ann Bot. https://doi.org/10.1093/aob/mcq028

  • Masclaux-Daubresse C, Reisdorf-Cren M, Pageau K et al (2006) Glutamine synthetase-glutamate synthase pathway and glutamate dehydrogenase play distinct roles in the sink-source nitrogen cycle in tobacco. Plant Physiol 140(2):444–456. https://doi.org/10.1104/pp.105.071910

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • McBratney AB, Minasny B, Whelan BM (2003) Obtaining ‘useful’ high-resolution soil data from proximally-sensed electrical conductivity (PSEC/R) surveys. In: Stafford JV (ed) Precision agriculture ’05. Wageningen Academic Publishers, Wageningen, The Netherlands and Sweden, pp 503–511

    Google Scholar 

  • Mian MH (2002) Azobiofer: a technology of production and use of Azolla as biofertilizer for irrigated rice and fish cultivation. In: Kennedy IR, Choudhury ATMA (eds) Biofertilizers in action. Rural Industries Research and Development Corporation, Canberra, pp 45–54

    Google Scholar 

  • Miller AJ, Fan X, Orsel M (2007) Nitrate transport and signalling. J Exp Bot 58:2297–2306. https://doi.org/10.1093/jxb/erm066

    Article  CAS  PubMed  Google Scholar 

  • Moll RH, Kamprath EJ, Jackson WA (1982) Analysis and interpretation of factors which contribute to efficiency of nitrogen utilization. Agron J 74:562–564

    Google Scholar 

  • Mortvedt JJ (1979) Crop response to zinc sources—applied alone or with suspensions. Fert Solutions 23:64–79

    Google Scholar 

  • Nguyen HT, Fischer KS, Fukai S (2009) Physiological responses to various water saving systems in rice. Field Crop Res 112(2–3):189–198

    Google Scholar 

  • Norman RJ, Wilson CE, Salton NA (2003) Soil fertilization and mineral nutrition in U.S. mechanized rice culture. In: Smith CW, Dilday RH (eds) Rice: origin, history, technology, and production. John Wiley & Sons, New Jersey, pp 331–412

    Google Scholar 

  • Ohnishi M, Horie T, Homma K et al (1999) Nitrogen management and cultivar effects on rice yield and nitrogen use efficiency in Northeast Thailand. Field Crop Res 64:109–120

    Google Scholar 

  • Okumoto S, Pilot G (2011) Amino acid export in plants: a missing link in nitrogen cycling. Mol Plant. Oxford University Press. https://doi.org/10.1093/mp/ssr003

  • Olesen JE, Sorensen P, Thomsen IK et al (2004) Integrated nitrogen input systems in Denmark. In: Mosier AR, Syers JK, Freney JR (eds) Agriculture and the nitrogen cycle: assessing the impacts of fertilizer use on food production and the environment, Paris, France. Island Press, Washington, DC, pp 129–140

    Google Scholar 

  • Pabbi S, Vaishya AK (1992) Effect of insecticide on Cyanobacteria growth and nitrogen fixation. In: Kaushik BD (ed) Proceeding national symposium cyanobacterial nitrogen fixation. Island Press, Washington, DC

    Google Scholar 

  • Pan J, Liu Y, Zhong X et al (2017) Grain yield, water productivity and nitrogen use efficiency of rice under different water management and fertilizer-N inputs in South China. Agric Water Manag 184:191–200

    Google Scholar 

  • Passioura JB (1977) Grain yield, harvest index and water use of wheat. J Aust Inst Agric Sci 43:117–120

    Google Scholar 

  • Peng B, Kong H, Li Y et al (2014) OsAAP6 functions as an important regulator of grain protein content and nutritional quality in rice. Nat Commun 5. https://doi.org/10.1038/ncomms5847

  • Peng SB, Buresh RJ, Huang JI et al (2010) Improving nitrogen fertilizer in rice by site-specific N management: a review. Agron Sustain Dev 30:649–656

    CAS  Google Scholar 

  • Peng SB, Buresh RJ, Huang JI et al (2011) Improving nitrogen fertilization in rice by site-specific N management. In: Sustainable agriculture volume 2. Springer, Dordrecht, The Netherlands, pp 943–952

    Google Scholar 

  • Perchlik M, Tegeder M (2017) Improving plant nitrogen use efficiency through alteration of amino acid transport processes. Plant Physiol 175(1):235–247. https://doi.org/10.1104/pp.17.00608

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  • Pooniya V, Shivay YS, Rana A et al (2012) Enhancing soil nutrient dynamics and productivity of basmati rice through residue incorporation and zinc fertilization. Eur J Agron 41:28–37

    CAS  Google Scholar 

  • Potel F, Valadier MH, Ferrario-Méry S et al (2009) Assimilation of excess ammonium into amino acids and nitrogen translocation in Arabidopsis thaliana-roles of glutamate synthases and carbamoylphosphate synthetase in leaves. FEBS J 276(15):4061–4076. https://doi.org/10.1111/j.1742-4658.2009.07114.x

    Article  CAS  PubMed  Google Scholar 

  • Prasad LRV, Mailapalli DR (2018) Evaluation of nitrogen fertilization patterns using DSSAT for enhancing grain yield and nitrogen use efficiency in rice. Commun Soil Sci Plant Anal 49:1–17

    Google Scholar 

  • Prasad R (2005) Rice-wheat cropping systems. Adv Agron 86:285–339

    Google Scholar 

  • Prasad R (2006) Zinc in soils and in plant, human & animal nutrition. Indian J Fert 2:103–119

    CAS  Google Scholar 

  • Prasad R (2011) Aerobic rice systems. Adv Agron 111:208–221

    Google Scholar 

  • Prasad R, Shivay YS, Kumar D (2014) Agronomic biofortification of cereal grains with iron and zinc. Adv Agron 125:55–91

    Google Scholar 

  • Prasad R, Shivay YS, Kumar D et al (2012) Textbook of field crop production, vol 1 (Prasad R, ed). ICAR Publications, New Delhi, India, p 165

    Google Scholar 

  • Qiao J, Yang L, Yan T et al (2012) Nitrogen fertilizer reduction in rice production for two consecutive years in the Taihu Lake area. Agric Ecosyst Environ 146:103–112

    CAS  Google Scholar 

  • Raja W, Rathaur P, John SA et al (2012) Azolla–anabaena association and its significance in supportable agriculture. Hacettepe J Biol Chem 40(1):1–6

    Google Scholar 

  • Ram M, Om H, Dhiman SD et al (2006) Productivity and economics of rice (Oryza sativa) wheat (Triticum aestivum) cropping system as affected by establishment methods and tillage practices. Ind J Agron 51(2):77–80

    Google Scholar 

  • Raun WR, Johnson GV (1999) Improving nitrogen use efficiency for cereal production. Agron J 91:357–363

    Google Scholar 

  • Richards RA, Rebetzke GJ, Condon AG et al (2002) Breeding opportunities for increasing efficiency of water use and crop yield in temperate cereals. Crop Sci 42:111–121

    PubMed  Google Scholar 

  • Russo S (1996) Rice yield as affected by the split method of N application and nitrification inhibitor DCD. Cah Opt Mediterr 15:43–53

    Google Scholar 

  • Sathiya K, Ramesh T (2009) Effect of split application of nitrogen on growth and yield of aerobic rice. Asian J Exp Sci 23:303–306

    CAS  Google Scholar 

  • Satybhan S, Virendra S, Krishan P (2017) Importance of microorganisms in agriculture. A proceeding book of national conference on climate and environmental changes: impact, challenges and solutions, Sacred Heart Degree College, Sitapur, UP, India, 28 Feb–1 Mar 2017, ISBN:978-93-86148-89-6, pp 93–117

    Google Scholar 

  • Schmidt JP, De Joia AJ, Ferguson RB et al (2002) Corn yield response to nitrogen at multiple in-field locations. Agron J 94:798–806

    Google Scholar 

  • Schroeder JJ, Neeteson JJ, Oenema O et al (2000) Does the crop or the soil indicate how to save nitrogen in maize production? Reviewing the state of the art. Field Crop Res 66:151–164

    Google Scholar 

  • Shahane AA, Shivay YS, Kumar D et al (2019) Zinc nutrition of rice as influenced by crop establishment methods, rates of nitrogen and phosphorus fertilization and inoculation with microbial consortia. J Plant Nutr 42(16):1967–1981

    Google Scholar 

  • Shao G, Cui J, Lu B et al (2015) Impacts of controlled irrigation and drainage on the yield and physiological attributes of rice. Agric Water Manag 149:156–165

    Google Scholar 

  • Sharma PK, Bhushan L, Ladha JK et al (2002) In water-wise rice production (Bouman BAM, Hengsdijk H, Hardy B, Bindraban PS, Toung TP, Ladha JK, eds). International Rice Research Institute, Los Banõs, Philippines, pp 223–235

    Google Scholar 

  • Shaver TM, Westfall DG, Ronaghi M (2007) Zinc fertilizer solubility and its effects on zinc bioailability over time. J Plant Nutr 30:123–133

    CAS  Google Scholar 

  • Shen J, Yuan L, Zhang J et al (2011) Phosphorus dynamics: from soil to plant. Plant Physiol 156(3):997–1005

    CAS  PubMed  PubMed Central  Google Scholar 

  • Shi WM, Xu WF, Li SM et al (2010) Responses of two rice cultivars differing in seedling-stage nitrogen use efficiency to growth under low-nitrogen conditions. Plant Soil 326:291–302

    CAS  Google Scholar 

  • Shivay YS, Kumar D, Ahlawat IPS, Prasad R (2007) Relative efficiency of zinc oxide and zinc sulphate coated urea for rice. Indian J Fert 3:51–55

    CAS  Google Scholar 

  • Shivay YS, Kumar D, Prasad R (2008) Relative efficiency of zinc sulfate and zinc oxide–coated urea in rice–wheat cropping system. Commun Soil Sci Plant Anal 39(7–8):1154–1167. https://doi.org/10.1080/00103620801925869

    Article  CAS  Google Scholar 

  • Shivay YS, Prasad R (2012) Zinc-coated urea improves productivity and quality of basmati rice (Oryza sativa L.) under zinc stress condition. J Plant Nutr 35(6):928–951

    CAS  Google Scholar 

  • Shivay YS, Prasad R, Kaur R, Pal M (2016) Relative efficiency of zinc sulphate and chelated zinc on zinc biofortification of rice grains and zinc use-efficiency in basmati rice. Proc Natl Acad Sci India B 86:973–984

    CAS  Google Scholar 

  • Shivay YS, Prasad R, Pal M (2014) Effect of conditioning zinc sulfate heptahydrate (ZnSHH) with zinc oxide (ZnO) and neem oil on growth, productivity, zinc biofortification of grain and zinc uptake by basmati rice. J Plant Nutr 37:1873–1884

    CAS  Google Scholar 

  • Shivay YS, Prasad R, Pal M (2015a) Effects of source and method of zinc application on yield, zinc biofortification of grain, and Zn uptake and use efficiency in chickpea (Cicer arietinum L.). Commun Soil Sci Plant Anal 46:2191–2200

    CAS  Google Scholar 

  • Shivay YS, Prasad R, Rahal A (2010) Genotypic variation for productivity, zinc utilization efficiencies, and kernel quality in aromatic rice under low available zinc conditions. J Plant Nutr 33:1835–1848

    CAS  Google Scholar 

  • Shivay YS, Prasad R, Singh RK et al (2015b) Relative efficiency of zinc-coated urea and soil and foliar application of zinc sulphate on yield, nitrogen, phosphorus, potassium, zinc and iron biofortification in grains and uptake by basmati rice (Oryza sativa L.). J Agric Sci 7:161–173

    Google Scholar 

  • Shrawat AK, Carroll RT, DePauw M et al (2008) Genetic engineering of improved nitrogen use efficiency in rice by the tissue-specific expression of alanine aminotransferase. Plant Biotechnol J 6:722–732

    CAS  PubMed  Google Scholar 

  • Shuman LM (1991) Chemical forms of micronutrients in soil. In: Mortvedt JJ, Cox FR, Shuman LM, Welch RM (eds) Micronutrients in agriculture, 2nd edn. Soil Science Society of America, Madison, WI, pp 113–144

    Google Scholar 

  • Sillanpaa M (1982) Micronutrients and the nutrient status of soils–a global study. FAO Soils Bulletin 48, FAO, Rome

    Google Scholar 

  • Singh B, Singh Y, Ladha JK et al (2002) Chlorophyll meter and leaf colour chart based nitrogen management for rice and wheat in Northwestern India. Agron J 94:821–829

    Google Scholar 

  • Singh MV, Patel KP, Ramani VP (2003) Crop responses to secondary and micronutrients in Bulletin 1. Indian Institute of Soil Science, Bhopal

    Google Scholar 

  • Singh RN (1939) An investigation in the algal flora of paddy field soils of the united provinces. Indian J Agric Sci 9:55–57

    Google Scholar 

  • Singh RN (1942) The fixation of elementary nitrogen by some of the commonest blue-green algae from the paddy soils of the united provinces. Indian J Agric Sci 12:743

    CAS  Google Scholar 

  • Singh RN (1961) Role of blue-green algae in nitrogen economy of Indian agriculture. ICAR, New Delhi

    Google Scholar 

  • Singh U, Ladha JK, Castillo EG et al (1998) Genotypic variation in nitrogen use efficiency in medium and long duration rice. Field Crop Res 58:35–53

    Google Scholar 

  • Singh V, Thenua OVS, Shivay YS (2017) Effect of phosphorus nutrition on chickpea (Cicer arietinum L.) in sunflower-chickpea cropping system. Progress Res Int J 12(III):2371–2378

    Google Scholar 

  • Singh YV (2013) Crop and water productivity as influenced by rice cultivation methods under organic and inorganic sources of nutrient supply. Paddy Water Environ 11:531–542

    Google Scholar 

  • Slaton NA, Gbur EE, Wilson CE et al (2005) Rice response to granular zinc sources varying in water-soluble zinc. Soil Sci Soc Am J 69:443–452

    CAS  Google Scholar 

  • Smil V (1999) Nitrogen in crop production: an account of global flows. Glob Biogeochem Cycles 13:647–662

    CAS  Google Scholar 

  • Srivastava PC, Singh SK, Mishra B (2006) Crop response and profitability to applied secondary and micronutrients in cereals. Indian J Fert 2:45–51

    CAS  Google Scholar 

  • Subramanyan R (1972) The biology of blue-green algae of Sambhar lake salt works. In: Desikachary TV (ed) Taxonomy and biology of blue-green algae. Symposium of the taxonomy and biology of blue-green algae. Madras, pp 281–293

    Google Scholar 

  • Sun Y, Sun Y, Xu H et al (2016) Effects of fertilizer levels on the absorption, translocation, and distribution of phosphorus and potassium in rice cultivars with different nitrogen-use efficiencies. J Agric Sci 8:38–50

    Google Scholar 

  • Sun Y, Yan F, Sun Y et al (2017) Effects of different water regimes and nitrogen application strategies on grain filling characteristics and grain yield in hybrid rice. Arch Agron Soil Sci 64(8):1152–1171

    Google Scholar 

  • Swaine DJ (1955) Trace element content of soils. Commonwealth Bureau of Soils, Harpenden, UK

    Google Scholar 

  • Tabuchi M, Sugiyama K, Ishiyama K et al (2005) Severe reduction in growth rate and grain filling of rice mutants lacking OsGS1;1, a cytosolic glutamine synthetase1;1. Plant J 42(5):641–651. https://doi.org/10.1111/j.1365-313X.2005.02406.x

    Article  CAS  PubMed  Google Scholar 

  • Taylor MR, Reinders A, Ward JM (2015) Transport function of rice amino acid permeases (AAPs). Plant Cell Physiol 56(7):1355–1363. https://doi.org/10.1093/pcp/pcv053

    Article  CAS  PubMed  Google Scholar 

  • Ten-Berge HFM, Thiyagarajan TM, Shi Q et al (1997) Numerical optimization of nitrogen application to rice. Part I. Description of manage-N. Field Crop Res 51:29–42

    Google Scholar 

  • The Fertilizer Association of India (FAI) (2013) Fertilizer statistics, 58th edn. The Fertilizer Association of India, New Delhi

    Google Scholar 

  • Timsina J, Connor DJ (2001) Productivity and management of rice-wheat cropping systems: issues and challenges. Field Crop Res 69:93–132

    Google Scholar 

  • Trierweiler JF, Lindsay WL (1969) EDTA-ammonium carbonate soil test for zinc. Soil Sci Soc Am Proc 33:49–54

    CAS  Google Scholar 

  • Tu SH, Feng WQ (2000) Nutrient management in the rice-wheat cropping system in the Yangtze river flood plain. In: Hobbs PR, Gupta RK (eds) Soil and crop management practices for enhanced productivity of the rice-wheat cropping system in the Sichuan province of China. Rice-Wheat Consortium for the Indo-Gangetic Plains, New Delhi, pp 24–34

    Google Scholar 

  • Tuong TP, Bouman BAM (2003) Rice production in water-scarce environments. Water Product Agric Limits Oppor Improv 1:13–42

    Google Scholar 

  • Uphoff N, Randriamiharisoa R (2003) Reducing water use in irrigated rice production with the Madagascar system of rice intensification. In: Bouman BAM, Hengsdijk H, Hardy B, Bindraban PS, Toung TP, Ladha JK (eds) Water-wise rice production. International Rice Research Institute, Los Banõs. Philippines use efficiency of rice under different water regimes. Agronomy 9(39):1–18

    Google Scholar 

  • Vandamme P, Goris J, Wen-Ming C et al (2002) Burkholderiatuberum sp. nov. and Burkholderia phymatum sp. nov., nodulate the roots of tropical legumes. Syst Appl Microbiol 25:507–512

    PubMed  Google Scholar 

  • Venkataraman GS (1980) Algal biofertilizer: potential and problems. In: Seshadri CV, Thomas S, Jeeji BN (eds) Proceeding national workshop on algal systems. Indian Society of Biotechnology, IIT, New Delhi, pp 1–10

    Google Scholar 

  • Vinogradov AP (1959) The geochemistry of rare and dispersed chemical elements in soils. Consultants Bureau Press Inc, New York

    Google Scholar 

  • Wang HX, Liu CM, Zhang L (2002) Water-saving agriculture in China: an overview. Adv Agron 75:135–171

    Google Scholar 

  • Wang Z, Zhang W, Beebout S et al (2016) Grain yield, water and nitrogen use efficiencies of rice as influenced by irrigation regimes and their interaction with nitrogen rates. Field Crop Res 193:54–69

    Google Scholar 

  • White CL (1993) The chemistry of zinc. In: Robson AD (ed) Zinc in soil and plants. Kluwer Academics, Dordecht, The Netherlands

    Google Scholar 

  • Williams L, Miller A (2001) Transporters responsible for the uptake and partitioning of nitrogenous solutes. Annu Rev Plant Physiol Plant Mol Biol 52:659–688. https://doi.org/10.1146/annurev.arplant.52.1.659

    Article  CAS  PubMed  Google Scholar 

  • World Health Organization (WHO) (2002) The world health report 2002. World Health Organization, Geneva

    Google Scholar 

  • Xu G, Fan X, Miller AJ (2012) Plant nitrogen assimilation and use efficiency. Annu Rev Plant Biol 63(1):153–182. https://doi.org/10.1146/annurev-arplant-042811-105532

    Article  CAS  PubMed  Google Scholar 

  • Yadav MR, Kumar R, Parihar CM (2017) Strategies for improving nitrogen use efficiency: a review. Agric Rev 38(1):29–40

    Google Scholar 

  • Yan T, Wang J, Huang J (2015) Urbanization, agricultural water use, and regional and national crop production in China. Ecol Model 318:226–235

    Google Scholar 

  • Yang HC, Kan CC, Hung T et al (2017) Identification of early ammonium nitrate-responsive genes in rice roots. Sci Rep 7(1). https://doi.org/10.1038/s41598-017-17173-9

  • Yang J, Zhang J, Wang Z et al (2003) Postanthesis water deficits enhance grain filling in two-line hybrid rice. Crop Sci 43:2099–2108

    Google Scholar 

  • Zhao L, Wu L, Li Y et al (2009) Influence of the system of rice intensification on rice yield and nitrogen and water use efficiency with different n application rates. Exp Agric 45:275–286

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Abdel Rahman Mohammad Said Al-Tawaha .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Al-Tawaha, A.R.M.S. et al. (2020). Improving Water Use Efficiency and Nitrogen Use Efficiency in Rice Through Breeding and Genomics Approaches. In: Roychoudhury, A. (eds) Rice Research for Quality Improvement: Genomics and Genetic Engineering. Springer, Singapore. https://doi.org/10.1007/978-981-15-5337-0_15

Download citation

Publish with us

Policies and ethics