Skip to main content

RNA Interference: For Improving Traits and Disease Management in Plants

  • Chapter
  • First Online:
Climate Change, Photosynthesis and Advanced Biofuels

Abstract

Plant disease and reduced yield are both significant threats to modern agriculture. Cultivation managers continue to find control of disease and yield elusive. Plant biologists have adopted various methods of engineering for generating plants resistant to insect pests, viruses, nematodes, fungi, salinity, and drought. Most utilize resistance based on RNA silencing, a powerful genetic engineering tool with a robust history of enhancing plant growth, crop yield, and disease resistance for the past two decades. Genetically engineered plants expressing small RNAs are increasingly vital and likely to provide future effective strategies. Rapid application and other advantages of RNAi make it a novel gene therapy against drought, salinity, fungus, virus, and bacteria. RNAi also has the potential to improve plant metabolic traits through chromatin remodeling, gene expression via mRNA degradation, and inhibition of translation. A processed product dsRNA known as small interfering RNAs and microRNAs guides the silencing mechanism. Use of tissue-specific or inducible gene silencing, with appropriate promoters, to silence multiple genes simultaneously should allow genetic engineers to protect crops against disease and improve traits. The focus of this chapter is a general discussion of RNAi development, including its role in trait improvement and disease management in plants.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasi AR, Hajirezaei M, Hofius D, Sonnewald U, Voll LM (2007) Specific roles of a- and g-tocopherol in abiotic stress responses of transgenic tobacco. Plant Physiol 143:1720–1738

    CAS  PubMed  PubMed Central  Google Scholar 

  • Anandalakshmi R, Pruss GJ, Ge X, Marathe R, Smith TH, Vance VB (1998) A viral suppressor of gene silencing in plants. Proc Natl Acad Sci U S A 95:13079–13084

    CAS  PubMed  PubMed Central  Google Scholar 

  • Astier-Manifacier S, Cornuet P (1971) RNA-dependent RNA polymerase in Chinese cabbage. Biochim Biophys Acta 232:484–493

    CAS  PubMed  Google Scholar 

  • Astier-Manifacier S, Cornuet P (1978) Purification and molecular weight of an RNA-dependant RNA polymerase from Brassicae oleracea var. Botrytis. C R Acad Sci Hebd Seances Acad Sci D 287:1043–1046

    CAS  PubMed  Google Scholar 

  • Baker C, Jacyn NM, Mock Bruce D, Whitaker DP, Roberts CP, Rice KL, Deahl Aver’yanov AA (2005) Involvement of acetosyringone in plant-pathogen recognition. Biochem Biophys Res Commun 328:130–136

    CAS  PubMed  Google Scholar 

  • Bartel DP (2004) MicroRNAs: genomics, biogenesis, mechanism, and function. Cell 116(2):281–297

    CAS  PubMed  Google Scholar 

  • Baulcombe DC (1994) Nove1 strategies for engineering virus resistance in plants. Curr Opin Biotechnol 5:117–124

    CAS  Google Scholar 

  • Baulcombe DC (2004) RNA silencing in plants. Nature 431:356

    CAS  PubMed  Google Scholar 

  • Baum JA (2007) Control of coleopteran insect pests through RNA interference. Nat Biotechnol 25:1322–1326

    CAS  PubMed  Google Scholar 

  • Beachy RN (1997) Mechanisms and applications of pathogen-derived resistance in transgenic plants. Curr Opin Biotechnol 8:215–220

    CAS  PubMed  Google Scholar 

  • Becker A, Lange M (2010) VIGS—genomics goes functional. Trends Plant 15(1):1–4

    CAS  Google Scholar 

  • Berkhout B (2018) RNAi-mediated antiviral immunity in mammals. Curr Opin Virol 32:9–14

    CAS  PubMed  Google Scholar 

  • Bernstein E, Caudy AA, Hammond SM, Hannon GJ (2001) Role for a bidentate ribonuclease in the initiation step of RNA interference. Nature 409:363–366

    CAS  PubMed  Google Scholar 

  • Bolognesi R, Ramaseshadri P, Anderson J, Bachman P, Clinton W, Flannagan R, Ilagan O, Lawrence C, Levine S, Moar W, Mueller G, Tan J, Uffman J, Wiggins E, Heck G, Segers G (2012) Characterizing the mechanism of action of double-stranded RNA activity against western corn rootworm (Diabrotica virgifera virgifera LeConte). PLoS One 7(10):e47534

    CAS  PubMed  PubMed Central  Google Scholar 

  • Carthew RW, Sontheimer EJ (2009) Origins and mechanisms of miRNAs and siRNAs. Cell 136(4):642–655

    CAS  PubMed  PubMed Central  Google Scholar 

  • Chai XJ, Wang PW, Guan SY, Xu YW (2005) Reducing the maize amylopectin content through RNA interference manipulation. Zhi Wu Sheng Li Yu Fen Zi Sheng Wu Xue Xue Bao 31:625–630

    CAS  PubMed  Google Scholar 

  • Chaves MM, Oliveira MM (2004) Mechanisms underlying plant resilience to water deficits: prospects for water-saving agriculture. J Exp Bot 55:2365–2384

    CAS  PubMed  Google Scholar 

  • Chen F, Dixon RA (2007) Lignin modification improves fermentable sugar yields for biofuel production. Nat Biotechnol 25:759–761

    CAS  PubMed  Google Scholar 

  • Croteau R, Kutchan TM, Lewis NG (2000) Natural products (secondary metabolites). In: Buchanan B, Gruissem W, Jones R (eds) Biochemistry and molecular biology of plants. American Society of Plant Physiologists, Rockville, pp 1250–1319

    Google Scholar 

  • Cullen BR (2002) RNA interference: antiviral defense and genetic tool. Nat Immunol 3:597–599

    CAS  PubMed  Google Scholar 

  • Dalmay T, Hamilton A, Rudd S, Angell S, Baulcombe DC (2000) An RNA-dependent RNA polymerase gene in Arabidopsis is required for posttranscriptional gene silencing mediated by a transgene but not by a virus. Cell 101:543–553

    CAS  PubMed  Google Scholar 

  • Daniel RGP, John AG (2008) RNAi-mediated crop protection against insects. Trends Biotechnol 26:393–400

    Google Scholar 

  • Dasgupta I, Malathi VG, Mukherjee SK (2003) Genetic engineering for virus resistance. Curr Sci 84:341–354

    CAS  Google Scholar 

  • Davuluri GR, Van Tuinen A, Fraser PD, Manfredonia A, Newman R, Burgess D, Bramley PM (2005) Fruit-specific RNAi-mediated suppression of DET1 enhances carotenoid and flavonoid content in tomatoes. Nat Biotechnol 23:890–895

    CAS  PubMed  Google Scholar 

  • Dhankher OP (2006) Hyperaccumulation of arsenic in the shoots of Arabidopsis silenced for arsenate reductase (ACR2). Proc Natl Acad Sci U S A 103:5413–5418

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ding SW, Han Q, Wang J, Li WX (2018) Antiviral RNA interference in mammals. Curr Opin Immunol 54:109–114

    CAS  PubMed  PubMed Central  Google Scholar 

  • Dixon RA, Bouton JH, Narasimhamoorthy B, Saha M, Wang ZY, May GD (2007) Beyond structural genomics for plant science. Adv Agron 95:77–161

    CAS  Google Scholar 

  • Dorssers L, Zabel P, van der Meer J, van Kammen A (1982) Purification of a host-encoded RNA-dependent RNA polymerase from cowpea mosaic virus-infected leaves. Virology 116:236–249

    CAS  PubMed  Google Scholar 

  • Duda CT (1979) Synthesis of double-stranded RNA. II. Partial purification and characterization of an RNA-dependent RNA polymerase in healthy tobacco leaves. Virology 92:180–189

    CAS  PubMed  Google Scholar 

  • Duda CT, Zaitlin M, Siegel A (1973) In vitro synthesis of double-stranded RNA by an enzyme system isolated from tobacco leaves. Biochim Biophys Acta 319:62–71

    CAS  PubMed  Google Scholar 

  • Dunoyer P, Christopher AB, Gregory S, Wang Y, Florence J, Abdelmalek A, Christophe H, Olivier V (2010) An endogenous, systemic RNAi pathway in plants. EMBO J 29:1699–1712

    CAS  PubMed  PubMed Central  Google Scholar 

  • Eizenberg H, Golan S, Joel DM (2002) First report of the parasitic plant Orobanche aegyptiaca infecting olive. Plant Dis 86:814

    CAS  PubMed  Google Scholar 

  • Elbashir SM, Harborth J, Lendeckel W, Yalcin A, Weber K, Tuschl T (2001) Duplexes of 21-nucleotide RNAs mediate RNA interference in cultured mammalian cells. Nature 411:494–498

    CAS  PubMed  Google Scholar 

  • Filipowicz W (2005) RNAi: the nuts and bolts of the RISC machine. Cell 122:17–20

    CAS  PubMed  Google Scholar 

  • Fire A, Xu S, Montgomery MK, Kostas SA, Driver SE, Mello CC (1998) Potent and specific genetic interference by double-stranded RNA in Caenorhabditis elegans. Nature 391:806–811

    CAS  PubMed  Google Scholar 

  • Fitch MMM, Manshardt RM, Gonsalves D, Slightom JL, Sanford JC (1992) Virus resistant papaya plants derived from tissues bombarded with the coat protein gene of papaya ringspot virus. Nat Biotechnol 10:1466–1472

    CAS  Google Scholar 

  • Fukudome A, Fukuhara T (2017) Plant dicer-like proteins: double-stranded RNA-cleaving enzymes for small RNA biogenesis. J Plant Res 130:33–44

    CAS  PubMed  Google Scholar 

  • Grishok A, Pasquinelli AE, Conte D, Li N, Parrish S, Ha I, Baillie DL, Fire A, Ruvkun G, Mello CC (2001) Genes and mechanisms related to RNA interference regulate expression of the small temporal RNAs that control C. elegans developmental timing. Cell 106:23–34

    CAS  PubMed  Google Scholar 

  • Grosshans H, Filipowicz W (2008) Molecular biology: the expanding world of small RNAs. Nature 451:414–416

    CAS  PubMed  Google Scholar 

  • Guiliang T, Gad G (2004) Using RNAi to improve plant nutritional value: from mechanism to application. Trends Biotechnol 22:463–469

    Google Scholar 

  • Hamilton AJ, Baulcombe DC (1999) A species of small antisense RNA in posttranscriptional gene silencing in plants. Science 286:950–952

    CAS  PubMed  Google Scholar 

  • Hammond SM, Boettcher S, Caudy AA, Kobayashi R, Hannon GJ (2001) Argonaute2, a link between genetic and biochemical analyses of RNAi. Science 293:1146–1150

    CAS  PubMed  Google Scholar 

  • Hanneke H, Guy S (2010) Mechanisms of dsRNA uptake in insects and potential of RNAi for pest control: a review. J Insect Physiol 56:227–235

    Google Scholar 

  • Hannon GJ (2002) RNA interference. Nature 418:244–251

    CAS  PubMed  Google Scholar 

  • Hashimoto T, Yamada Y (2003) New genes in alkaloid metabolism and transport. Curr Opin Biotechnol 14:163–168

    CAS  PubMed  Google Scholar 

  • Hauschild K, Pauli HH, Kutchan TM (1998) Isolation and analysis of a gene bbe1 encoding the berberine bridge enzyme from the California poppy Eschscholzia californica. Plant Mol Biol 36:473–478

    CAS  PubMed  Google Scholar 

  • Head GP, Carroll MW, Evans SP, Rule DM, Willse AR, Clark TL, Storer NP, Flannagan RD, Samuel LW, Meinke LJ (2017) Evaluation of SmartStax and SmartStax PRO maize against western corn rootworm and northern corn rootworm: efficacy and resistance management. Pest Manag Sci 73:1883–1899

    CAS  PubMed  Google Scholar 

  • Helliwell C, Waterhouse P (2003) Constructs and methods of high throughput gene silencing in plants. Methods 30:289–295

    CAS  PubMed  Google Scholar 

  • Helliwell CA, Wesley SV, Wielopolska AJ, Waterhouse PM (2002) High-throughput vectors for efficient gene silencing in plants. Funct Plant Biol 29:1217–1225

    CAS  PubMed  Google Scholar 

  • Hisano H, Nandakumar R, Wang ZY (2009) Genetic modification of lignin biosynthesis for improved biofuel production. In Vitro Cell Develop Biol Plant 45:306–313

    CAS  Google Scholar 

  • Hisano H, Nandakumar R, Wang ZY (2011) Genetic modification of lignin biosynthesis for improved biofuel production. In: Biofuels. Springer, New York, pp 223–235

    Google Scholar 

  • Jaskiewicz L, Filipowicz W (2008) Role of dicer in posttranscriptional RNA silencing. Curr Top Microbiol Immunol 320:77–97

    CAS  PubMed  Google Scholar 

  • John IY, Pradeepa G, Biao W, Natalya T, Alexey AT (2009) Engineering host resistance against parasitic weeds with RNA interference. Pest Manag Sci 65:460–466

    Google Scholar 

  • Kennerdell JR, Carthew RW (1998) Use of dsRNA-mediated genetic interference to demonstrate that frizzled and frizzled 2 act in the wingless pathway. Cell 95:1017–1026

    CAS  PubMed  Google Scholar 

  • Ketting RF, Fischer SE, Bernstein E, Sijen T, Hannon GJ, Plasterk RH (2001) Dicer functions in RNA interference and in synthesis of small RNA involved in developmental timing in C. elegans. Genes Dev 15:2654–2659

    CAS  PubMed  PubMed Central  Google Scholar 

  • Klahre U, Crété P, Leuenberger SA, Iglesias VA, Meins FJ (2002) High molecular weight RNAs and small interfering RNAs induce systemic posttranscriptional gene silencing in plants. Proc Natl Acad Sci U S A 18:11981–11986

    Google Scholar 

  • Krausz E, Korn K (2008) High-content siRNA screening for target identification and validation. Expert Opin Drug Discov 3:551–564

    CAS  PubMed  Google Scholar 

  • Kumagai MH, Donson J, della-Cioppa G, Harvey D, Hanley K, Grill LK (1995) Cytoplasmic inhibition of carotenoid biosynthesis with virus-derived RNA. Proc Natl Acad Sci U S A 92(5):1679–1683

    CAS  PubMed  PubMed Central  Google Scholar 

  • Kumar S, Tanti B, Patil BL, Mukherjee SK, Sahoo L (2017) RNAi-derived transgenic resistance to Mungbean yellow mosaic India virus in cowpea. PLoS One 12(10):e0186786

    PubMed  PubMed Central  Google Scholar 

  • Kusaba M, Miyahara K, Iida S, Fukuoka H, Takano T, Sassa H, Nishio T (2003) Low glutelin content1: a dominant mutation that suppresses the glutelin multigene family via RNA silencing in rice. Plant Cell 15:1455–1467

    CAS  PubMed  PubMed Central  Google Scholar 

  • Leuschner PJ, Ameres SL, Kueng S, Martinez J (2006) Cleavage of the siRNA passenger strand during RISC assembly in human cells. EMBO Rep 7:314–320

    CAS  PubMed  PubMed Central  Google Scholar 

  • Li WX, Ding SW (2001) Viral suppressors of RNA silencing. Curr Opin Biotechnol 12:150–154

    CAS  PubMed  Google Scholar 

  • Li H, Li WX, Ding SW (2002) Induction and suppression of RNA silencing by an animal virus. Science 296:1319–1321

    CAS  PubMed  Google Scholar 

  • Li Y, Lu J, Han Y, Fan X, Ding SW (2013) RNA interference functions as an antiviral immunity mechanism in mammals. Science 342:231–234

    CAS  PubMed  Google Scholar 

  • Li S, Xu Z, Sheng J (2018) tRNA-derived small RNA: a novel regulatory small non-coding RNA. Gene (Basel) 9:246

    Google Scholar 

  • Limpens E, Ramos J, Franken C, Raz V, Compaan B, Franssen H, Bisseling T, Geurts R (2004) RNA interference in Agrobacterium rhizogenes-transformed roots of Arabidopsis and Medicago truncatula. J Exp Bot 55:983–992

    CAS  PubMed  Google Scholar 

  • Lindbo JA, Dougherty WG (1992a) Untranslatable transcripts of the tobacco etch virus coat protein gene sequence can interfere with tobacco etch virus replication in transgenic plants and protoplasts. Virology 189:725–733

    CAS  PubMed  Google Scholar 

  • Lindbo JA, Dougherty WG (1992b) Pathogen-derived resistance to a potyvirus: immune and resistant phenotypes in transgenic tobacco expressing altered forms of a potyvirus coat protein nucleotide sequence. Mol Plant Microbe Interact 5(2):144–153

    CAS  PubMed  Google Scholar 

  • Lindbo JA, Silva-Rosales L, Proebsting WM, Dougherty WG (1993) Induction of a highly specific antiviral state in transgenic plants: implications for regulation of gene expression and virus resistance. Plant Cell 5:1749–1759

    CAS  PubMed  PubMed Central  Google Scholar 

  • Liu Q, Singh SP, Green AG (2002) High-stearic and high-oleic cottonseed oils produced by hairpin RNA-mediated post-transcriptional gene silencing. Plant Physiol 129:1732–1743

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mack GS (2007) MicroRNA gets down to business. Nat Biotechnol 25:631–638

    CAS  PubMed  Google Scholar 

  • Mao YB, Cai WJ, Wang JW, Hong GJ, Tao XY, Wang LJ, Huang YP, Chen XY (2007) Silencing a cotton bollworm P450 monooxygenase gene by plant-mediated RNAi impairs larval tolerance of gossypol. Nat Biotechnol 25:1307–1313

    CAS  PubMed  Google Scholar 

  • Margis R, Fusaro AF, Smith NA, Curtin SJ, Watson JM, Finnegan EJ, Waterhouse PM (2006) The evolution and diversification of dicers in plants. FEBS Lett 580(10):2442–2450

    CAS  PubMed  Google Scholar 

  • Marino M (2008) Profile of Richard Dixon. Proc Natl Acad Sci U S A 105:2263–2265

    CAS  PubMed  PubMed Central  Google Scholar 

  • Matzke MA, Matzke AJ, Kooter JM (2001a) RNA: guiding gene silencing. Science 293:1080–1083

    CAS  PubMed  Google Scholar 

  • Matzke MA, Matzke AJ, Pruss GJ, Vance VB (2001b) RNA-based silencing strategies in plants. Curr Opin Genet Dev 11:221–227

    CAS  PubMed  Google Scholar 

  • Meister G, Tuschl T (2004) Mechanisms of gene silencing by double-stranded RNA. Nature 431:343–349

    CAS  PubMed  Google Scholar 

  • Miki D, Itoh R, Shimamoto K (2005) RNA silencing of single and multiple members in a gene family of rice. Plant Physiol 138:1903–1913

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitsuhara I, Shirasawa SN, Iwai T, Nakamura S, Honkura R, Ohashi Y (2002) Release from post-transcriptional gene silencing by cell proliferation in transgenic tobacco plants: possible mechanism for noninheritance of the silencing. Genetics 160:343–352

    CAS  PubMed  PubMed Central  Google Scholar 

  • Mitter N, Worrall EA, Robinson KE, Li P, Jain RG, Taochy C, Fletcher SJ, Carroll BJ, Lu GQ, Xu ZP (2017) Clay nanosheets for topical delivery of RNAi for sustained protection against plant viruses. Nat Plants 3:16207

    CAS  PubMed  Google Scholar 

  • Mourrain P, Béclin C, Elmayan T, Feuerbach F, Godon C, Morel JB, Jouette D, Lacombe AM, Nikic S, Picault N, Rémoué K, Sanial M, Vo TA, Vaucheret H (2000) Arabidopsis SGS2 and SGS3 genes are required for posttranscriptional gene silencing and natural virus resistance. Cell 101:533–542

    CAS  PubMed  Google Scholar 

  • Namba S, Ling K, Gonsalves C, Gonsalves D, Slightom JL (1991) Expression of the gene encoding the coat protein of cucumber mosaic virus (CMV) strain WL appears to provide protection to tobacco plants against infection by several different CMV strains. Gene 107:181–188

    CAS  PubMed  Google Scholar 

  • Namba S, Ling K, Gonsalves C, Slightom JL, Gonsalves D (1992) Protection of transgenic plants expressing the coat protein gene of watermelon mosaic virus ii or zucchini yellow mosaic virus against six potyviruses. Phytopathology 82:940–946

    CAS  Google Scholar 

  • Napoli C, Lemieux C, Jorgensen R (1990) Introduction of a chimeric Chalcone synthase gene into petunia results in reversible co-suppression of homologous genes in trans. Plant Cell 2:279–289

    CAS  PubMed  PubMed Central  Google Scholar 

  • Nishihara M (2005) Flavonoid components and flower color change in transgenic tobacco plants by suppression of chalcone isomerase gene. FEBS Lett 579:6074–6078

    CAS  PubMed  Google Scholar 

  • Nora S, MichÈLe Z, Asuka I, Biao D, Ming-Bo W, Gabi K, Michael W (2009) RNAi-mediated resistance to Potato spindle tuber viroid in transgenic tomato expressing a viroid hairpin RNA construct. Mol Plant Pathol 10:459–469

    Google Scholar 

  • Ogita S (2004) Application of RNAi to confirm theobromine as the major intermediate for efficient biosynthesis in coffee plants with potential for construction of decaffeinated varieties. Plant Mol Biol 54:931–941

    CAS  PubMed  Google Scholar 

  • Ogita S, Uefuji H, Yamaguchi Y, Koizumi N, Sano H (2003) RNA interference: producing decaffeinated coffee plants. Nature 423:823–823

    CAS  PubMed  Google Scholar 

  • Pandit NN, Russo VE (1992) Reversible inactivation of a foreign gene, hph, during the asexual cycle in Neurospora crassa transformants. Mol Gen Genet 234:412–422

    CAS  PubMed  Google Scholar 

  • Park SU, Yu M, Facchini PJ (2003) Modulation of berberine bridge enzyme levels in transgenic root cultures of California poppy alters the accumulation of benzophenanthridine alkaloids. Plant Mol Biol 51:153–164

    CAS  PubMed  Google Scholar 

  • Peltier AJ, Hatfield RD, Grau CR (2009) Soybean stem lignin concentration relates to resistance to Sclerotinia sclerotiorum. Plant Dis 93:149–154

    CAS  PubMed  Google Scholar 

  • Petrovska N (2005) Transgenic ryegrasses (Lolium spp.) with down-regulation of main pollen allergens. Mol Breed 14:489–501

    Google Scholar 

  • Plasterk RH (2002) RNA silencing: the genome’s immune system. Science 296:1263–1265

    CAS  PubMed  Google Scholar 

  • Praveen G, Deepmala G, Monika M, Kumar V, Jyoti B, Sudesh KY (2012) MicroRNAs and their role in plants during abiotic stresses. In: Ahmad P, Prasad MNV (eds) Environmental adaptations and stress tolerance of plants in the era of climate change, vol 12. Springer, New York, pp 265–278

    Google Scholar 

  • Prins M, Goldbach R (1996) RNA-mediated virus resistance in transgenic plants. Arch Virol 141:2259–2276

    CAS  PubMed  Google Scholar 

  • Qiao F, Yang Q, Wang CL, Fan YL, Wu XF, Zhao KJ (2007) Modification of plant height via RNAi suppression of OsGA20ox2 gene in rice. Euphytica 158:35–45

    CAS  Google Scholar 

  • Reddy MSS, Chen F, Shadle G, Jackson L, Aljoe H, Dixon RA (2005) Targeted down-regulation of cytochrome P450 enzymes for forage quality improvement in alfalfa (Medicago sativa L.). Proc Natl Acad Sci U S A 102:16573–16578

    CAS  PubMed  PubMed Central  Google Scholar 

  • Regina A, Bird A, Topping D, Bowden S, Freeman J, Barsby T, Kosar-Hashemi B, Li Z, Rahman S, Morell M (2006) High-amylose wheat generated by RNA interference improves indices of large-bowel health in rats. Proc Natl Acad Sci U S A 103:3546–3551

    CAS  PubMed  PubMed Central  Google Scholar 

  • Ruiz MT, Voinnet O, Baulcombe DC (1998) Initiation and maintenance of virus-induced gene silencing. Plant Cell 10:937–946

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sanford JC, Johnston SA (1985) The concept of parasite-derived resistance—deriving resistance genes from the parasite’s own genome. J Theor Biol 113:395–405

    Google Scholar 

  • Sato F (2005) RNAi and functional genomics. Plant Biotechnol 22:431–442

    CAS  Google Scholar 

  • Schweizer P, Pokorny J, Schulze-Lefert P, Dudler R (2000) Double-stranded RNA interferes with gene function at the single-cell level in cereals. Plant J 24:895–903

    CAS  PubMed  Google Scholar 

  • Segal G (2003) A new opaque variant of maize by a single dominant RNA-interference-inducing transgene. Genetics 165:387–397

    CAS  PubMed  PubMed Central  Google Scholar 

  • Senthil-Kumar M, Rame Gowda HV, Hema R, Mysore KS, Udayakumar M (2008) Virus-induced gene silencing and its application in characterizing genes involved in water-deficit-stress tolerance. J Plant Physiol 165:1404–1421

    CAS  PubMed  Google Scholar 

  • Senthil-Kumar M, Hema R, Suryachandra TR, Ramegowda HV, Gopalakrishna R, Rama N, Udayakumar M, Mysore KS (2010) Functional characterization of three water deficit stress-induced genes in tobacco and Arabidopsis: an approach based on gene down regulation. Plant Physiol Biochem 48:35–44

    CAS  PubMed  Google Scholar 

  • Shitan N, Bazin I, Dan K, Obata K, Kigawa K, Ueda K, Sato F, Forestier C, Yazaki K (2003) Involvement of CjMDR1, a plant multidrug-resistance-type ATP-binding cassette protein, in alkaloid transport in Coptis japonica. Proc Natl Acad Sci U S A 100:751–756

    CAS  PubMed  PubMed Central  Google Scholar 

  • Sijen T, Fleenor J, Simmer F, Thijssen KL, Parrish S, Timmons L, Plasterk RH, Fire A (2001) On the role of RNA amplification in dsRNA-triggered gene silencing. Cell 107:465–476

    CAS  PubMed  Google Scholar 

  • Singh A, Taneja J, Dasgupta I, Mukherjee SK (2015) Development of plants resistant to tomato geminiviruses using artificial trans-acting small interfering RNA. Mol Plant Pathol 16:724–734

    CAS  PubMed  PubMed Central  Google Scholar 

  • Smith NA, Singh SP, Wang MB, Stoutjesdijk PA, Green AG, Waterhouse PM (2000) Total silencing by intron-spliced hairpin RNAs. Nature 407:319–320

    CAS  PubMed  Google Scholar 

  • Storz G (2002) An expanding universe of noncoding RNAs. Science 296:1260–1263

    CAS  PubMed  Google Scholar 

  • Stoutjesdijk PA, Singh SP, Liu Q, Hurlstone CJ, Waterhouse PA, Green AG (2002) hpRNA-mediated targeting of the Arabidopsis FAD2 gene gives highly efficient and stable silencing. Plant Physiol 129:1723–1731

    CAS  PubMed  PubMed Central  Google Scholar 

  • Takanami Y, Fraenkel-Conrat H (1982) Comparative studies on ribonucleic acid dependent RNA polymerases in cucumber mosaic virus infected cucumber and tobacco and uninfected tobacco plants. Biochemistry 21:3161–3167

    CAS  PubMed  Google Scholar 

  • Tenllado F, Llave C, Dı́az-Ruı́z JR (2004) RNA interference as a new biotechnological tool for the control of virus diseases in plants. Virus Res 102:85–96

    CAS  PubMed  Google Scholar 

  • Tijsterman M, Plasterk RH (2004) Dicers at RISC: the mechanism of RNAi. Cell 117:1–3

    CAS  PubMed  Google Scholar 

  • Tijsterman M, Ketting RF, Plasterk RH (2002) The genetics of RNA silencing. Annu Rev Genet 36:489–519

    CAS  PubMed  Google Scholar 

  • Vain P (2007) Thirty years of plant transformation technology development. Plant Biotechnol J 5:221–229

    CAS  PubMed  Google Scholar 

  • Valliyodan B, Nguyen HT (2006) Understanding regulatory networks and engineering for enhanced drought tolerance in plants. Curr Opin Plant Biol 9:189–195

    CAS  PubMed  Google Scholar 

  • van der Krol AR, Mur LA, Beld M, Mol JNM, Stuitje AR (1990) Flavonoid genes in petunia: addition of a limited number of gene copies may lead to a suppression of gene expression. Plant Cell 2:291–299

    PubMed  PubMed Central  Google Scholar 

  • Vance V, Vaucheret H (2001) RNA silencing in plants: defense and counter-defense. Science 292:2277–2280

    CAS  PubMed  Google Scholar 

  • Vaucheret H (2008) Plant ARGONAUTES. Trends Plant Sci 13:350–358

    CAS  PubMed  Google Scholar 

  • Vaucheret H, Beclin C, Fagard M (2001) Post-transcriptional gene silencing in plants. J Cell Sci 114:3083–3091

    CAS  PubMed  Google Scholar 

  • Voinnet O, Baulcombe DC (1997) Systemic signaling in gene silencing. Nature 389:553

    CAS  PubMed  Google Scholar 

  • Vu TV, Choudhury NR, Mukherjee SK (2013) Transgenic tomato plants expressing artificial microRNAs for silencing the pre-coat and coat proteins of a begomovirus, Tomato leaf curl New Delhi virus, show tolerance to virus infection. Virus Res 172:35–45

    CAS  PubMed  Google Scholar 

  • Wagner GJ, Kroumova AB (2008) The use of RNAi to elucidate and manipulate secondary metabolite synthesis in plants. In: Ying SY (ed) Current perspectives in microRNAs (miRNA). Springer, Dordrecht, pp 431–459

    Google Scholar 

  • Wassenegger M, Krczal G (2006) Nomenclature and functions of RNA-directed RNA polymerases. Trends Plant Sci 11:142–151

    CAS  PubMed  Google Scholar 

  • Watanabe T, Totoki Y, Toyoda A, Kaneda M, Kuramochi-Miyagawa S, Obata Y, Chiba H, Kohara Y, Kono T, Nakano T, Surani MA, Sakaki Y, Sasaki H (2008) Endogenous siRNAs from naturally formed dsRNAs regulate transcripts in mouse oocytes. Nature 453:539–543

    CAS  PubMed  Google Scholar 

  • Waterhouse PM, Helliwell CA (2003) Exploring plant genomes by RNA-induced gene silencing. Nat Rev Genet 4:29–38

    CAS  PubMed  Google Scholar 

  • Waterhouse PM, Wang MB, Lough T (2001) Gene silencing as an adaptive defense against viruses. Nature 411:834–842

    CAS  PubMed  Google Scholar 

  • Watson JM, Fusaro AF, Wang M, Waterhouse PM (2005) RNA silencing platforms in plants. FEBS Lett 579:5982–5987

    CAS  PubMed  Google Scholar 

  • Wesley SV, Helliwell CA, Smith NA, Wang M, Rouse DT, Liu Q, Gooding PS, Singh SP, Abbott D, Stoutjesdijk PA, Robinson SP (2001) Construct design for efficient, effective and high-throughput gene silencing in plants. Plant J 27:581–590

    CAS  PubMed  Google Scholar 

  • Williams RW, Rubin GM (2002) ARGONAUTE1 is required for efficient RNA interference in Drosophila embryos. Proc Natl Acad Sci U S A 99:6889–6894

    CAS  PubMed  PubMed Central  Google Scholar 

  • Willmann MR, Endres MW, Cook RT, Gregory BD (2011) The functions of RNA-dependent RNA polymerases in Arabidopsis. Arabidopsis Book 9:e0146. (American Society of Plant Biologists)

    PubMed  PubMed Central  Google Scholar 

  • Wilson TMA (1993) Strategies to protect crop plants against viruses: pathogen-derived resistance blossoms. Proc Natl Acad Sci U S A 90:3134–3141

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xie Z, Fan B, Chen C, Chen Z (2001) An important role of an inducible RNA-dependent RNA polymerase in plant antiviral defense. Proc Natl Acad Sci U S A 98:6516–6521

    CAS  PubMed  PubMed Central  Google Scholar 

  • Xiong AS (2004) Different effects on ACC oxidase gene silencing triggered by RNA interference in transgenic tomato. Plant Cell Rep 23:639–646

    PubMed  Google Scholar 

  • Xu P, Zhang Y, Kang L, Roossinck MJ, Mysore KS (2006) Computational estimation and experimental verification of off-target silencing during posttranscriptional gene silencing in plants. Plant Physiol 142:429–440

    CAS  PubMed  PubMed Central  Google Scholar 

  • Yoder JI, Gunathilake P, Wu B, Tomilova N, Tomilov AA (2009) Engineering host resistance against parasitic weeds with RNA interference. Pest Manag Sci 65:460–466

    CAS  PubMed  Google Scholar 

  • Yoshida S, Yoshida S, Cui S, Ichihashi Y, Shirasu K (2016) The Haustorium, a specialized invasive organ in parasitic plants. Annu Rev Plant Biol 67:643–667

    CAS  PubMed  Google Scholar 

  • Zamore PD (2001) RNA interference: listening to the sound of silence. Nat Struct Biol 8:746–750

    CAS  PubMed  Google Scholar 

  • Zamore PD, Tuschl T, Phillip AS, David PB (2000) RNAi: double-stranded RNA directs the ATP-dependent cleavage of mRNA at 21 to 23 nucleotide intervals. Cell 101:25–33

    CAS  PubMed  Google Scholar 

  • Zhang H, Xia R, Meyers BC, Walbot V (2015) Evolution, functions, and mysteries of plant ARGONAUTE proteins. Curr Opin Plant Biol 27:84–90

    CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Lingaraj Sahoo .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Kumar, S., Dey, A., Yau, YY., Easterling, M., Sahoo, L. (2020). RNA Interference: For Improving Traits and Disease Management in Plants. In: Kumar, A., Yau, YY., Ogita, S., Scheibe, R. (eds) Climate Change, Photosynthesis and Advanced Biofuels. Springer, Singapore. https://doi.org/10.1007/978-981-15-5228-1_14

Download citation

Publish with us

Policies and ethics