Skip to main content

Creation of Organic-Metal Hybridized Nanocrystals Toward Nonlinear Optics Applications

  • Chapter
  • First Online:
Advances in Organic Crystal Chemistry

Abstract

Organic nanocrystals are occupied in an intermediate state between single molecule and the corresponding molecular crystal in a bulk state, which are fabricated in common by using the reprecipitation method. The crystal size is in the range of several tens nanometer to sub-micrometer. In particular, linear optical properties such as excitonic absorption spectrum and fluorescence emission spectrum are evidently dependent on crystal size, owing to thermally soften nanocrystal lattice with increasing specific surface area. Core–shell-type hybridization between organic nanocrystals and novel metal nanoparticles is of too much interest in current material science. In this chapter, creation of polydiacetylene nanocrystal fibers hybridized with gold nanoparticles will be introduced in details toward nonlinear optics applications. Polydiacetylene is typically one-dimensional π-conjugated polymer, and one of the most promising organic nonlinear optical materials. It is expected that nonlinear optical properties would be enhanced because of peculiar optoelectronic interaction between exciton in polydiacetylene and localized surface plasmon resonance effect in gold nanoparticles.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Hur, K., Wiesner, U.: Design and applications of multiscale organic-inorganic hybrid materials derived from block copolymer self-assembly. Adv. Polym. Sci. 262, 259–293 (2013)

    Article  CAS  Google Scholar 

  2. Zhang, S., Pelligra, C.I., Feng, X., Osuji, C.O.: Direct assembly of hybrid nanomaterials and nanocomposites. Adv. Mater. 30, 1705794-1–1705794-23 (2018)

    Google Scholar 

  3. Kango, S., Kalia, S., Thakur, P., Kumari, B., Pathania, D.: Semiconductor-polymer hybrid materials. Adv. Polym. Sci. 267, 283–311 (2015)

    Article  CAS  Google Scholar 

  4. Mai, Y.-W., Yu, Z.-Z.: Polymer Nanocomposites. Woodhead Publisher, Cambridge (2006)

    Book  Google Scholar 

  5. Ni, W., Yang, Z., Chen, H., Li, L., Wang, J.: Coupling between molecular and plasmonic resonances in freestanding dye-gold nanorod hybrid nanostructures. J. Am. Chem. Soc. 130, 6692–6693 (2008)

    Article  CAS  Google Scholar 

  6. Loo, C., Lowery, A., Halas, N., West, J., Drezek, R.: Immunotargeted nanoshells for integrated cancer imaging and therapy. Nano Lett. 5, 709–711 (2005)

    Article  CAS  Google Scholar 

  7. Nomura, M., Kumagai, N., Iwamoto, S., Ota, Y., Arakawa, Y.: Laser oscillation in a strongly coupled single-quantum-dot-nanocavity system. Nat. Phys. 6, 279–283 (2010)

    Article  CAS  Google Scholar 

  8. Rodrigues, A.R.O., Gomes, I.T., Almeida, B.G., Araujo, J.P., Castanheira, E.M.S., Coutinho, P.J.G.: Magnetic liposomes based on nickel ferrite nanoparticles for biomedical applications. Phys. Chem. Chem. Phys. 17, 18011–18021 (2015)

    Article  CAS  Google Scholar 

  9. Kuznetsov, A.I., Miroshinichenko, A.E., Brongersma, M.L., Kivshar, Y.S., Luk’yanchuk, B.: Optically resonant dielectric nanostructures. Science, 354, 2472-1–2472-8 (2016)

    Google Scholar 

  10. Oikawa, H., Kasai, H., Nakanishi, H.: Fabrication of organic microcrystals and their optical properties (Chap. 11), and Some applications of organic microcrystals (Chap. 12), In: Anisotropic Organic Materials: Approaches to Polar Order. ACS Symposium Series 798 (2001)

    Google Scholar 

  11. Nakanishi, H., Oikawa, H.: Reprecipitation method for organic nanocrystals (Chap. 2), Optical properties of polymer nanocrystals (Chap. 14), and Particle-based optical devices (Chap. 29). In: Single Organic Nanoparticles, NanoScience and Technology. Springer, Berlin (2003)

    Google Scholar 

  12. Oikawa, H., Masuhara, A., Kasai, H., Mitsui, T., Sekiguchi, T., Nakanishi, H.: Organic and polymer nanocrystals: their optical properties and function, in nanophotonics: integrating photochemistry, optics and nano/bio materials studies. Elsevier, Amsterdam (2004)

    Google Scholar 

  13. Wegner, G.: Solid-state polymerization mechanisms. Pure Appl. Chem. 49, 443–454 (1997)

    Article  Google Scholar 

  14. Matsuda, H., Molyneux, S., Kar, A.K., Wherrett, B.S., Okada, S., Nakanishi, H.: Third-order nonlinear optical properties of polydiacetylene crystal. J. Photopolym. Sci. Technol. 6, 261–268 (1993)

    Article  CAS  Google Scholar 

  15. Giorgetti, E., Margheri, G., Sottini, S., Chen, X., Cravino, A., Comoretto, D., Cuniberti, C., Dell’Erba, C., Dellepiane, G.: Linear and nonlinear characterization of polyDCHD-HS films. Synth. Met. 115, 257–260 (2000)

    Article  CAS  Google Scholar 

  16. Volkov, V.V., Asahi, T., Masuhara, H., Masuhara, A., Kasai, H., Oikawa, H., Nakanishi, H.: Size-dependent optical properties of polydiacetylene nanocrystals. J. Phys. Chem. B 108, 7674–7680 (2004)

    Article  CAS  Google Scholar 

  17. Oikawa, H., Mitsui, T., Onodera, T., Kasai, H., Nakanishi, H., Sekiguchi, T.: Crystal size dependence of fluorescence spectra from perylene nanocrystals evaluated by scanning near-field optical microspectroscop. Jpn. J. Appl. Phys. 42, L111–L113 (2003)

    Article  CAS  Google Scholar 

  18. Oikawa, H.: Hybridized organic nanocrystals for optically functional materials. Bull. Chem. Soc. Jpn 84, 233–250 (2011)

    Article  CAS  Google Scholar 

  19. Onodera, T., Oikawa, H., Masuhara, A., Kasai, H., Sekiguchi, T., Nakanishi, H.: Silver-deposited polydiacetylene nanocrystals produced by visible-light-driven photocatalytic reduction. Jpn. J. Appl. Phys. 46, L336–L338 (2007)

    Article  CAS  Google Scholar 

  20. Onodera, T., Ujita, J., Ishikawa, D., Masuhara, A., Kasai, H., Oikawa, H.: Hybridization of polydiacetylene core and metal shell. ECS Trans. 16, 1–12 (2009)

    Article  CAS  Google Scholar 

  21. Yokoyama, T., Masuhara, A., Onodera, T., Kasai, H., Oikawa, H.: Development of fabrication process for Ag/polydiacethylene (core/shell) hybridized nanocrystals. Synth. Met. 159, 897–899 (2009)

    Article  CAS  Google Scholar 

  22. Iimori, Y., Onodera, T., Kasai, H., Mitsuishi, M., Miyashita, T., Oikawa, H.: Fabrication of pseudo single crystalline thin films composed of polydiacetylene nanofibers and their optical properties. Opt. Mater. Exp. 7, 2218–2223 (2017)

    Article  CAS  Google Scholar 

  23. Naiki, H., Masuhara, A., Masuo, S., Onodera, T., Kasai, H., Oikawa, H.: Highly controlled plasmonic emission enhancement from metal-semiconductor quantum dot complex nanostructures. J. Phys. Chem. C 117, 2455–2459 (2013)

    Article  CAS  Google Scholar 

  24. Wang, X.D., Shen, Z.X., Sang, T., Cheng, X.B., Li, M.-F., Chen, L.-Y., Wang, Z.-S.: Preparation of spherical silica particles by Stöber process with high concentration of tetra-ethyl-orthosilicate. J. Colloid Interface Sci. 341, 23–29 (2010)

    Article  CAS  Google Scholar 

  25. Lakowicz, J.R.: Radiative decay engineering 1: Biophysical and biomedical applications. Anal. Biochem. 298, 1–24 (2001)

    Article  CAS  Google Scholar 

  26. Lakowicz, J.R., Shen, Y., D’Auria, S., Malicka, J., Fang, J., Gryczynski, Z., Gryczynski, I.: Radiative decay engineering 2. Effects of silver island films on fluorescence intensity, lifetimes, and resonance energy transfer. Anal. Biochem. 301, 261–277 (2002)

    Article  CAS  Google Scholar 

  27. Li, F., Li, G.Z., Wang, H.Q., Xue, Q.J.: Studies on cetyltrimethylammonium bromide (CTAB) micellar solution and CTAB reversed microemulsion by ESR and 2H NMR. Colloids Surfaces A Physicochem. Eng. Aspects 127, 89–96 (1997)

    Article  CAS  Google Scholar 

  28. Jin, R.C., Cao, Y.W., Mirkin, C.A., Kelly, K.L., Schatz, G.C., Zheng, J.G.: Photoinduced conversion of silver nanospheres to nanoprisms. Science 294, 1901–1903 (2001)

    Article  CAS  Google Scholar 

  29. Murphy, C.J., Jana, N.R.: Controlling the aspect ratio of inorganic nanorods and nanowires. Adv. Mater. 14, 80–82 (2002)

    Article  CAS  Google Scholar 

  30. Chen, S.H., Wang, Z.L., Ballato, J., Foulger, S.H., Carroll, D.L.: Monopod, bipod, tripod, and tetrapod gold nanocrystals. J. Am. Chem. Soc. 125, 16186–16187 (2003)

    Article  CAS  Google Scholar 

  31. Sakamoto, N., Onodera, T., Dezawa, T., Shibata, Y., Oikawa, H.: Highly enhanced emission of visible light from core-dual-shell type hybridized nanoparticles. Part. Part. Syst. Charact. 34, 1700258-1–1700258-8 (2017)

    Google Scholar 

  32. Neeves, A.E., Birnboim, M.H.: Composite structures for the enhancement of nonlinear-optical susceptibility. J. Opt. Soc. Am. B 6, 787–796 (1989)

    Article  CAS  Google Scholar 

  33. Nghiem, T.H.L., Le, T.N., Do, T.H., Vu, T.T.D., Do, Q.H., Tran, H.N.: Preparation and characterization of silica-gold core-shell nanoparticles. J. Nanopart. Res. 15, 2091-1–2091-9 (2013)

    Google Scholar 

  34. Liang, Z.S., Liu, Y., Ng, S.S., Li, X.Y., Lai, L.H., Liu, S.Y.: The effect of pH value on the formation of gold nanoshells. J. Nanopart. Res. 13, 3301–3311 (2011)

    Article  CAS  Google Scholar 

  35. Shi, W.L., Sahoo, Y., Swihart, M.T., Prasad, P.N.: Gold nanoshells on polystyrene cores for control of surface plasmon resonance. Langmuir 21, 1610–1617 (2005)

    Article  CAS  Google Scholar 

  36. Sato, R., Momida, H., Ohnuma, M., Sasase, M., Ohno, T., Kishimoto, N., Takeda, Y.: Experimental dispersion of the third-order optical susceptibility of Ag nanoparticles. J. Opt. Soc. Am. B 29, 2410–2413 (2012)

    Article  CAS  Google Scholar 

  37. Sato, R., Ohnuma, M., Oyoshi, K., Takeda, Y.: Experimental investigation of nonlinear optical properties of Ag nanoparticles: effects of size quantization. Phys. Rev. B 90, 1254171-1–1254171-6 (2014)

    Google Scholar 

  38. Sato, R., Ohnuma, M., Oyoshi, K., Takeda, Y.: Spectral investigation of nonlinear local field effects in Ag nanoparticles. J. Appl. Phys. 117, 113101-1–113101-6 (2015)

    Google Scholar 

  39. Sato, R., Ishii, S., Nagao, T., Naito, M., Takeda, Y.: Broadband plasmon resonance enhanced third-order optical nonlinearity in refractory titanium nitride nanostructures. ACS Photonics 5, 3452–3458 (2018)

    Article  CAS  Google Scholar 

  40. Lee, H., Dellatore, S.M., Miller, W.M., Messersmith, P.B.: Mussel-inspired surface chemistry for multifunctional coating. Science 318, 426–430 (2007)

    Article  CAS  Google Scholar 

Download references

Acknowledgements

The authors especially thank to the late Professor Emeritus Hachiro Nakanishi in Tohoku University (TU, Japan), Prof. Hitoshi Kasai (IMRAM, TU, Japan), Mr. Y. Hayasaka (technical staff, The Electron Microscopy Center, IMR, TU, Japan), and M.Sc. Rie Chiba (Dept. of Chemistry, Graduate School of Sci., TU, Japan at that time) for their valuable scientific discussion and great experimental contributions.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Hidetoshi Oikawa .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Onodera, T., Sato, R., Takeda, Y., Oikawa, H. (2020). Creation of Organic-Metal Hybridized Nanocrystals Toward Nonlinear Optics Applications. In: Sakamoto, M., Uekusa, H. (eds) Advances in Organic Crystal Chemistry. Springer, Singapore. https://doi.org/10.1007/978-981-15-5085-0_13

Download citation

Publish with us

Policies and ethics