Skip to main content

Microbial Degradation of Hydrocarbons from Petrochemical Waste Using Food Waste Amendments

  • Chapter
  • First Online:
Advances in Waste Processing Technology

Abstract

Polycyclic aromatic hydrocarbons (PAHs) are an organic pollutant that is abundant in petrochemical waste. Bioremediation can be an alternative way for the remediation of such hydrocarbon-contaminated soil. Therefore, this study determined the PAHs degradation activity by soil bacteria amended with food waste in a shake flask system. Diesel oil that was amended with various types of food wastes was inoculated with hydrocarbon-contaminated soil and incubated for 5 weeks at 30 °C, 150 rpm. The PAH extraction was conducted by using a liquid–liquid extraction procedure, and the diesel oil degradation compound was analyzed using gas chromatography–mass spectrometry (GC-MS). Bacteria from the enrichment culture flasks were isolated and identified based on colony morphology and biochemical tests using the BBL Crystal Identification Kit. As a result, the degradation rates of diesel oil compounds were higher in the flasks amended with food wastes as compared to the flask unamended with food wastes. A total of 11 hydrocarbon-degrading bacteria were successfully isolated and preliminary identified to be Acinetobacter baumannii, Pseudomonas aeruginosa, Stenotrophomonas maltophilia, Pseudomonas fluorescens, Klebsiella pneumoniae, Shewanella putrefacien, Enterobacter aerogenes, Brevibacillus brevis, Bacillus cereus, Staphylococcus saprophyticus and Corynebacterium sp. The results of this study demonstrated the potential of food wastes to be harnessed for enhancing the bioremediation of diesel-contaminated soil instead of being disposed of as a waste.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 39.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 54.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 54.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Abbasian, F., Lockington, R., Megharaj, M., & Naidu, R. (2016). The biodiversity changes in the microbial population of soils contaminated with crude oil. Current Microbiology, 72(6), 663–670.

    Article  CAS  Google Scholar 

  • Abioye, P. O., Abdul Aziz, A., & Agamuthu, P. (2010). Enhanced biodegradation of used engine oil in soil amended with organic wastes. Water, Air, and Soil pollution, 209(1–4), 173–179.

    Article  CAS  Google Scholar 

  • Abioye, O. P., Agamuthu, P., & Abdul Aziz, A. R. (2012). Biodegradation of used motor oil in soil using organic waste amendments. Biotechnology Research International, 2012, 1–8.

    Article  CAS  Google Scholar 

  • Agamuthu, P., & Victor, D. (2011). Policy trends of extended producer responsibility in Malaysia. Waste Management and Research, 29(9), 945–953.

    Article  CAS  Google Scholar 

  • Ahamed, F., Hasibullah, M., Ferdouse, J., & Anwar, M. N. (2011). Microbial degradation of petroleum hydrocarbon. Bangladesh Journal of Microbiology, 27(1), 10–13. https://doi.org/10.3329/bjm.v27i1.9161.

    Article  Google Scholar 

  • Akpe, R., Ekundayo, A. O., Aigere, S. P., & Okwu, G. I. (2015). Bacterial degradation of petroleum hydrocarbons in crude oil polluted soil amended with cassava peels. American Journal of Research Communication, 3(7), 99–118.

    Google Scholar 

  • Alves Da Costa, D., Lucas De Souza, C., De Oliveira, E., Saliba, S., Da, J., &Carneiro, C. (2015). By-products of sugarcane industry in ruminant nutrition. IJAAR, 3, 1–9.

    Google Scholar 

  • Amodu, O. S., Ojumu, T. V., & Ntwampe, K. O. (2016). Bioremediatingsilty soil contaminated by phenanthrene, pyrene, benz (a) anthracene, benzo (a) pyrene using Bacillus sp. and Pseudomonas sp.: Biosurfactant/Beta vulgaris agrowaste effects. African Journal of Biotechnology, 15(22), 1058–1068.

    Google Scholar 

  • Aris, A. Z., Ismail, T. T., Harun, R., Abdullah, A. M. & Ishak, M. Y. (2014). From sources to solution. In Proceedings of the International Conference on Environment Forensics (vol. 10, pp. 978–981).

    Google Scholar 

  • Atlas, R. M. (1975). Effects of temperature and crude oil composition on petroleum biodegradation. Applied and Environment Microbiology, 30(3), 396–403.

    Article  CAS  Google Scholar 

  • Borah, D., & Yadav, R. N. S. (2014). Optimization of BH medium for efficient biodegradation of diesel, crude oil and used engine oil by a newly isolated Bacillus cereus strain DRDU1 from an automobile engine. Biotechnology, 13(4), 181–185.

    Article  CAS  Google Scholar 

  • Darsa, K. V., Thatheyus, A. J., & Ramya, D. (2014). Biodegradation of petroleum compound using the bacterium Bacillus subtilis. Science International, 2(1), 20–25.

    Article  Google Scholar 

  • Deka, H., & Lahkar, J. (2016). Soil bacteria for polycyclic aromatic (p. 291). Soil and Microbes: Plant.

    Google Scholar 

  • Delille, D., Coulon, F., & Pelletier, E. (2007). Long-term changes of bacterial abundance, hydrocarbon concentration and toxicity during a biostimulation treatment of oil-amended organic and mineral sub-Antarctic soils. Polar Biology, 30(7), 925–933.

    Article  Google Scholar 

  • Deng, M. C., Li, J., Liang, F. R., Yi, M., Xu, X. M., Yuan, J. P., Peng, J., Wu, C. F., & Wang, J. H. (2014). Isolation and characterization of a novel hydrocarbon-degrading bacterium Achromobacter sp. HZ01 from the crude oil-contaminated seawater at the Daya Bay, southern China. Marine Pollution Bulletin, 83(1), 79–86.

    Google Scholar 

  • Diaz, E. (2004). Bacterial degradation of aromatic pollutants: A paradigm of metabolic versatility. International Microbiology, 7(3), 173–180.

    CAS  Google Scholar 

  • Fazilah, A., Darah, I., & Noraznawati, I. (2016). Bioremediation of phenanthrene by monocultures and mixed culture bacteria isolated from contaminated soil. International Journal of Biological, Biomolecular, Agricultural, Food and Biotechnological Engineering, 10(9), 495–498.

    Google Scholar 

  • Foght, J. M., & Westlake, D. W. S. (1987). Biodegradation of hydrocarbons in freshwater. In Oil in freshwater: chemistry, biology, countermeasure technology (pp. 217–230). Pergamon.

    Google Scholar 

  • Hamid, K. B. A., Ishak, M. Y., & Samah, M. A. A. (2015). Analysis of municipal solid waste generation and composition at administrative building café in Universiti Putra Malaysia: A case study. Polish Journal of Environmental Studies, 24(5), 1969–1982.

    Google Scholar 

  • Hamzah, A., Phan, C.-W., Abu Bakar, N. F., & Wong, K. K. (2013). Biodegradation of crude oil by constructed bacterial consortia and the constituent single bacteria isolated from Malaysia. Bioremediation Journal, 17(1), 1–10. https://doi.org/10.1080/10889868.2012.731447.

    Article  CAS  Google Scholar 

  • Haritash, A., & Kaushik, C. (2007). Assessment of seasonal enrichment of heavy metals in respirable suspended particulate matter of a sub-urban Indian City. Environmental Monitoring and Assessment, 128(1–3), 411–420.

    Article  CAS  Google Scholar 

  • Jackson, C. R., Fedorka-Cray, P. J., & Barrett, J. B. (2004). Use of a genus- and species-specific multiplex PCR for identification of enterococci. Journal of Clinical Microbiology, 42(8), 3558–3565.

    Article  CAS  Google Scholar 

  • Jeng, A., Haraldsen, T., & Vagstad, N. (2004). Meat and bone meal as nitrogen fertilizer to cereals in Norway. Agricultural and Food Science, 13(3), 268–275.

    Article  Google Scholar 

  • Kaplan, C. W., & Kitts, C. L. (2004). Bacterial succession in a petroleum land treatment unit. Applied and Environment Microbiology, 70(3), 1777–1786.

    Article  CAS  Google Scholar 

  • Keshavarzifard, M., Zakaria, M. P., Tan, H. W., Ferdiusus M. Y., Mustafa, S., Vaezzadeh, V., et al. (2014). Baseline distributions and sources of Polycyclic Aromatic Hydrocarbons. Marine Pollution Bulletin, 88, 366–372.

    Article  CAS  Google Scholar 

  • Kim, Y.-H., Freeman, J. P., Moody, J. D., Engesser, K.-H., & Cerniglia, C. E. (2005). Effects of pH on the degradation of phenanthrene and pyrene by Mycobacterium vanbaalenii PYR-1. Applied Microbiology and Biotechnology, 67(2), 275–285.

    Article  CAS  Google Scholar 

  • Kumar, B. L., & Gopal, D. S. (2015). Effective role of indigenous microorganisms for sustainable environment. Biotech, 5(6), 867–876.

    Google Scholar 

  • Lau, E.V., Gan, S., & Ng, H. K. (2010). Extraction technique for polycyclic aromatic hydrocarbon in soil review article. International Journal of Analytical Chemistry, 1–9.

    Google Scholar 

  • Liu, X., Selonen, V., Steffen, K., Surakka, M., Rantalainen, A. L., Romantschuk, M., et al. (2019). Meat and bone meal as a novel biostimulation agent in hydrocarbon contaminated soils. Chemosphere, 225, 574–578.

    Article  CAS  Google Scholar 

  • Margesin, R., Zimmerbauer, A., & Schinner, F. (2000). Monitoring of bioremediation by soil biological activities. Chemosphere, 40(4), 339–346.

    Article  CAS  Google Scholar 

  • Miller, J. H., & Shah, S. (1999). Identification of clinically isolated vancomycin-resistant Enterococci: Comparison of API and BBL Crystal systems. Journal of Medical Microbiology, 48(7), 695–696.

    Article  Google Scholar 

  • Nwinyi, O. C., Kanu, I. A., Tunde, A., & Ajanaku, K. O. (2014). Characterization of diesel degrading bacterial species from contaminated tropical ecosystem. Brazilian Archives of Biology and Technology, 57(5), 789–796.

    Article  Google Scholar 

  • Nwogu, T. P., Azubuike, C. C., & Ogugbue, C. J. (2015). Enhanced bioremediation of soil artificially contaminated with petroleum hydrocarbons after amendment with Capra aegagrus hircus (Goat) Manure. Biotechnology Research International, 2015, 657349. https://doi.org/10.1155/2015/657349.

    Article  CAS  Google Scholar 

  • Omoni, V. T., Aguoru, C. U., Edoh, E. O., & Makinde, O. (2015). Biostimulation of hydrocarbon utilizing bacteria in soil contaminated with spent engine oil using banana and plantain agro-wastes. Journal of soil science and environmental management, 6(8), 225–233. https://doi.org/10.5897/JSSEM15.0505.

    Article  Google Scholar 

  • Onuoha, S. C. (2013). Stimulated biodegradation of spent lubricating motor oil in soil amended with animal droppings. Journal of Natural Sciences Research, 3(12), 106–116.

    Google Scholar 

  • Panwar, N. (2015). Studies on physicochemical characteristics and fertility of soil by addition of banana peels—Waste Management. IJSRD—International Journal for Scientific Research and Development, 3(1), 2321–2613.

    Google Scholar 

  • Passarini, M. R., Rodrigues, M. V., da Silva, M., & Sette, L. D. (2011). Marine-derived filamentous fungi and their potential application for polycyclic aromatic hydrocarbon bioremediation. Marine Pollution Bulletin, 62(2), 364–370.

    Google Scholar 

  • Ravindra, K. S. (2008). Atmospheric polycyclic aromatic: Source attribution, emission factors and regulation. Atmospheric Environment, 42(13), 2895–2921.

    Article  CAS  Google Scholar 

  • Riffaldi, R., Levi-Minzi, R., Cardelli, R., Palumbo, S., & Saviozzi, A. (2006). Soil biological activities in monitoring the bioremediation of diesel oil-contaminated soil. Water, air, and soil pollution, 170(1–4), 3–15.

    Google Scholar 

  • Schaechter, M., Engleberg, C., DiRita, V. J., & Dermody, T. (2007). Schaechter’s mechanisms of microbial disease. In W. Lippincott Williams, I. Sherameti, & A. Varma (Eds.), Soil heavy metals. Berlin: Springer.

    Google Scholar 

  • Sinha, S., Chattopadhyay, P., & Ken, S. K. (2012). Microbial degradation of xenobiotics. Environmental Science and Engineering, 3, 395–410.

    Article  Google Scholar 

  • Suchý, P., Straková, E., Herzig, I., Steinhauser, L., Králik, G., & Zapletal, D. (2009). Chemical composition of bone tissue in broiler chickens intended for slaughter. Czech Journal of Animal Science, 54(547), 324–330.

    Google Scholar 

  • Tyagi, M. D. F., Manuela, M. R., Carvalho, & Carla C. C. R. (2010). Bioaugmentation and biostimulation strategies to improve the effectiveness of bioremediation processes. Biodegradation, 22(2), 231–241.

    Google Scholar 

  • U.S. Environmental Protection Agency (EPA). (1983). Method 4181—Chemical analyses of water and wastes, Washington DC.

    Google Scholar 

  • U.S. Environmental Protection Agency (EPA). (1992). Method 1663—Differentiation of diesel and crude oil by GC/FID, Washington DC.

    Google Scholar 

  • Van Hamme, J. D., Singh, A., & Ward, O. P. (2003). Recent advances in petroleum microbiology. Microbiology and Molecular Biology Reviews, 67(4), 503–549.

    Article  CAS  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Fazilah Ariffin .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Ariffin, F., Min, C.J., Ze, G.S., Yussof, S., Ismail, N. (2020). Microbial Degradation of Hydrocarbons from Petrochemical Waste Using Food Waste Amendments. In: Yaser, A. (eds) Advances in Waste Processing Technology. Springer, Singapore. https://doi.org/10.1007/978-981-15-4821-5_10

Download citation

Publish with us

Policies and ethics