Skip to main content

Calixarene-Based Gas Sensors

  • Chapter
  • First Online:
Functional Nanomaterials

Abstract

Calixarenes are macrocyclic compounds containing a central cavity which can be easily synthesized through various chemical procedures. The presence of the cavity means that they can reversibly form host–guest compounds with inorganic gases and organic vapors. Calixarenes can be obtained in varied sizes and be easily chemically modified with functional groups. This makes them especially suitable as selective sensing molecules due to the ability to fine-tune their structure, cavity size, and functionality. They are highly stable and amenable to processing into thin films using several techniques. Their porous structure allows for rapid diffusion within the films, serving as receptors for binding of gaseous species. In this chapter, we will highlight the use of calixarenes in sensor devices with various principles of detection, including surface plasmon resonance (SPR), surface acoustic wave (SAW), quartz crystal microbalance (QCM), and fiber-optic-based interrogation methods. The combination of stable selective receptors with sensing platforms has enabled sensitive, selective, and reliable detection and monitoring of hazardous gases and vapors.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 84.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 109.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 109.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Gutsche CD (1989) Calixarenes (Monographs in supramolecular chemistry). Royal Society of Chemistry, London

    Google Scholar 

  2. Gutsche CD (1998) Calixarenes revisited (Monographs in supramolecular chemistry). Royal Society of Chemistry, London

    Google Scholar 

  3. Gutsche CD (2008) Calixarenes: an introduction (Monographs in supramolecular chemistry). Royal Society of Chemistry, London

    Google Scholar 

  4. Vicens J, Böhmer V (eds) (1990) Calixarenes: a versatile class of macrocyclic compounds (Topics in inclusion science). Springer, New York

    Google Scholar 

  5. Mandolini L, Ungaro R (eds) (2000) Calixarenes in action. Imperial College Press, London

    Google Scholar 

  6. Asfari M-Z Ed, Böhmer V, Harrowfield J, Vicens J (eds) (2001) Calixarenes 2001. Springer, New York

    Google Scholar 

  7. Sliwa W, Kozlowski C (2009) Calixarenes and resorcinarenes: synthesis, properties and applications. Wiley VCH, Weinheim

    Google Scholar 

  8. Davis F, Higson SPJ (2011) Macrocycles: construction, chemistry and nanotechnology applications. Wiley, New Jersey, pp 77–125

    Book  Google Scholar 

  9. Guérineau V, Rollet M, Viel S, Lepoittevin B, Costa L, Saint-Aguet P, Laurent R, Roger P, Gigmes D, Martini C, Huc V (2019) The synthesis and characterization of giant calixarenes. Nat Commun 10:113

    Google Scholar 

  10. Timmerman P, Verboom W, Reinhoudt DN (1996) Resorcinarenes. Tetrahedron 52:2663–2704

    Article  CAS  Google Scholar 

  11. Kumar S, Chawla S, Zou MC (2017) Calixarenes based materials for gas sensing applications: a review. J Incl Phenom Macrocycl Chem 88:129–158

    Article  CAS  Google Scholar 

  12. Sharma K, Cragg PJ (2011) Calixarene based chemical sensors. Chem Sen 1(9):1–18

    CAS  Google Scholar 

  13. Mokhtari B, Pourabdollah K (2013) Application of calixarenes in development of sensors. Asian J Chem 25(1):1–12

    Article  CAS  Google Scholar 

  14. Diamond D, Nolan K (2001) Calixarenes: designer ligands for chemical sensors. Anal Chem 73:22A-29 A

    Google Scholar 

  15. O’Sullivan CK, Guilbault GG (1999) Commercial quartz crystal microbalances—theory and applications. Biosens Bioelec 14:663–670

    Article  Google Scholar 

  16. Mujahid A, Dickert FL (2017) Surface Acoustic Wave (SAW) for chemical sensing applications of recognition layers. Sensors 17:2716–2741

    Google Scholar 

  17. Karlsson R (2004) SPR for molecular interaction analysis: a review of emerging application areas. J Mol Recog 17:151–161

    Article  CAS  Google Scholar 

  18. Thallapally PK, Lloyd GO, Wirsig TB, Bredenkamp MW, Atwood JL, Barbour LJ (2005) Organic crystals absorb hydrogen gas under mild conditions. Chem Commun 42:5272–5274

    Article  CAS  Google Scholar 

  19. Yasin FM, Iyer KS, Raston CL (2013) Palladium nano-carboncalixarene based devices for hydrogen sensing. New J Chem 37:3289–3293

    Article  CAS  Google Scholar 

  20. Leonova L, Shmygleva L, Ukshe A, Levchenko A, Chub A, Dobrovolsky Y (2016) Solid-state hydrogen sensors based on calixarene—12-phosphatotungstic acid composite electrolytes. Sens Actuator B 230:470–476

    Article  CAS  Google Scholar 

  21. Oueslati I, Ghrairi A, Ribeiro ES, Batista de Carvalho LAE, Gil JM, Paixao JA (2018) Calixarene functionalization of TiO2 nanoarrays: an effective strategy for enhancing the sensor versatility. J Mater Chem A 6:10649–10654

    Article  CAS  Google Scholar 

  22. Mermer O, Okur S, Sumer F, Ozbek C, Sayin S, Yilmaz M (2012) Gas sensing properties of carbon nanotubes modified with calixarene molecules measured by QCM techniques. Acta Phys Pol A 121:240–242

    Article  CAS  Google Scholar 

  23. Sayin S, Ozbek C, Okur S, Yilmaz M (2014) Preparation of the ferrocene-substituted 1,3-distal p-tert-butylcalix[4]arene based QCM sensors array and utilization of its gas-sensing affinities. J Organomet Chem 771:9–13

    Article  CAS  Google Scholar 

  24. Özbek C, Okur S, Mermer O, Kurt M, Sayın S, Yılmaz M (2015) Effect of Fe doping on the CO gas sensing of functional calixarene molecules measured with quartz crystal microbalance technique. Sens Actuator B 215:464–470

    Article  CAS  Google Scholar 

  25. Baldini L, Melegari M, Bagnacani V, Casnati A, Dalcanale E, Sansone F, Ungaro R (2011) CO2 capture by multivalent amino-functionalized calix[4]arenes: self-assembly, absorption, and QCM detection studies. J Org Chem 76:3720–3732

    Google Scholar 

  26. Daschbach JL, Sun X, Chang T-M, Thallapally PK, McGrail BP, Dang LX (2009) Computational studies of load dependent guest dynamics and free energies of inclusion for CO2 in low-density p-tert-butylcalix[4]arene at loadings up to 2:1. J Phys Chem A 113:3369–3374

    Article  CAS  Google Scholar 

  27. Ananchenko GS, Moudrakovski IL, Coleman AW, Ripmeester JA (2008) A channel-free soft-walled capsular calixarene solid for gas adsorption. Angew Chem Int Ed 47:5616–5618

    Article  CAS  Google Scholar 

  28. Hussain A, Farrukh S, Minhas FT (2015) Two-stage membrane system for post-combustion CO2 capture application. Energy Fuels 29:6664–6669

    Article  CAS  Google Scholar 

  29. Leontiev AV, Rudkevich DM (2004) Encapsulation of gases in the solid state. Chem Commun 13:1468–1469

    Article  CAS  Google Scholar 

  30. Culotta E, Koshland Jr DE (1992) NO news is good news. Science 258:1862–1865

    Google Scholar 

  31. Rathore R, Lindeman SV, Rao KSSP, Sun D, Kochi JK (2000) Calix[4]arene hosts: the tight binding of nitric oxide to distal (Cofacial) aromatic groups. Angew Chem Int Ed 39:2123–2127

    Article  CAS  Google Scholar 

  32. Botta B, D’Acquarica I, Monache GD, Nevola L, Tullo D, Ugozzoli F, Pierini M (2007) Nitrosonium complexes of resorc[4]arenes: spectral, kinetic, and theoretical studies. J Am Chem Soc 129:11202–11212

    Article  CAS  Google Scholar 

  33. Gambert R (2001) Device for the measurement of low partial pressures of nitrogen monoxide in breath by preconcentration on a calixarene layer. Application: DE, DE Patent, 10130296

    Google Scholar 

  34. Zyryanov GV, Kang Y, Rudkevich DM (2003) Sensing and fixation of NO2/N2O4 by calix[4]arenes. J Am Chem Soc 125:2997–3007

    Google Scholar 

  35. Organo G, Leontiev AV, Sgarlata V, Rasika Dias HV, Rudkevich DM (2005) Supramolecular features of calixarene-based synthetic nanotubes. Angew Chem Int Ed 44:3043–3047

    Google Scholar 

  36. Kang YL, Rudkevich DM (2004) Polymer-supported calix[4]arenes for sensing and conversion of NO2/N2O4. Tetrahedron 60:11219–11225

    Google Scholar 

  37. Rudkevich DM, Kang Y, Leontiev AV, Organo VG, Zyryanov GV Molecular containers for NOX gases. Supramol Chem 17:93–99 (2005)

    Google Scholar 

  38. Rudkevich DM (2005) Sensing and fixation of NO2 by calixarenes. Kem Ind 54:57–63

    CAS  Google Scholar 

  39. Hines JH, Wanigasekara E, Rudkevich DM, Rogers RD (2008) Calix[4]arenes immobilized in a cellulose-based platform for entrapment and detection of NOx gases. J Mater Chem 18:4050–4055

    Article  CAS  Google Scholar 

  40. Ohira SL, Wanigasekar E, Rudkevich DM, Dasgupta PK (2009) Sensing parts per million levels of gaseous NO2 by a optical fiber transducer based on calix[4]arenes. Talanta 77:1814–1820

    Article  CAS  Google Scholar 

  41. Khabibullin AA, Safina GD, Ziganshin MA, Gorbatchuk VV (2012) Thermal analysis of charge-transfer complex formed by nitrogen dioxide and substituted calix[4]arene. J Therm Anal Calorim 110:1309–1313

    Article  CAS  Google Scholar 

  42. Gusak AS, Ivanova EA, Prokhorova PE, Rusinov GL, Verbitskiy EV, Morzherin YY (2014) Synthesis and use of polymer-immobilized calix[4]arene derivatives as molecular containers for nitrous gases. Russ Chem Bull 63:1395–1398

    Article  CAS  Google Scholar 

  43. Sarkara T, Srinivesa S (2018) Single-walled carbon nanotubes-calixarene hybrid for sub-ppm detection of NO2. Microelec Eng 197:28–32

    Article  CAS  Google Scholar 

  44. Richardson TH, Brook RA, Davis F, Hunter CA (2006) The NO2 gas sensing properties of calixarene/porphyrin mixed LB films. Colloid Surf A 284:320–325

    Article  CAS  Google Scholar 

  45. Roales J, Pedrosa JM, Castillero P, Cano M, Richardson TH (2011) Optimization of mixed Langmuir-Blodgett films of a water insoluble porphyrin in a calixarene matrix for optical gas sensing. Thin Solid Films 519:2025–2030

    Article  CAS  Google Scholar 

  46. Evyapan M, Dunbar ADF (2015) Improving the selectivity of a free base tetraphenylporphyrin based gas sensor for NO2 and carboxylic acid vapors. Sens Actuator B 206:74–83

    Article  CAS  Google Scholar 

  47. Lavrik NV, DeRossi D, Kazantseva ZI, Nabok AV, Nesterenko BA, Piletsky SA, Kalchenko VI, Shivaniuk AN, Markovskiy LN (1996) Composite polyaniline/calixarene Langmuir-Blodgett films for gas sensing. Nanotechnology 7:315–319

    Article  CAS  Google Scholar 

  48. Evyapan M, Dunbar ADF (2016) Controlling surface adsorption to enhance the selectivity of porphyrin based gas sensors. Appl Surf Sci 362:191–201

    Article  CAS  Google Scholar 

  49. Bunkoed O, Davis F, Kanatharana P, Thavarungkul P, Higson SPJ (2010) Sol-gel based sensor for selective formaldehyde determination. Anal Chim Acta 659:251–257

    Article  CAS  Google Scholar 

  50. Hu J-L, Zhou T, Zhang Y-F, Wang Z, Luo D-M, Cao Z (2011) Detection of trace formaldehyde gas based on quartz crystal microbalance sensor in living environment. Adv Mater Res 233–235:720

    Article  CAS  Google Scholar 

  51. Timmer B, Olthuis W, Van Den Berg A (2005) Ammonia sensors and their applications—a review. Sens Actuators B 107:666–677

    Article  CAS  Google Scholar 

  52. Grady T, Butler T, MacCraith BD, Diamond D, McKervey MA (1997) Optical sensor for gaseous ammonia with tuneable sensitivity. Analyst 122:803–806

    Google Scholar 

  53. McCarrick M, Harris SJ, Diamond D (1994) Assessment of a chromogenic calix[4]arene for the rapid colorimetric detection of trimethylamine. J Mater Chem 4:217–221

    Article  CAS  Google Scholar 

  54. Davis F, Faul CFJ, Higson SPJ (2009) Calix[4]resorcinarene-surfactant complexes: formulation, structure and potential sensor applications. Soft Matter 5:2746–2751

    Article  CAS  Google Scholar 

  55. Loughran M, Diamond D (2000) Monitoring of volatile bases in fish sample headspace using an acidochromic dye. Food Chem 69:97–103

    Article  CAS  Google Scholar 

  56. Li YY, Yin HZ, He XW, Chen LX, Zhang GZ, He JQ (2005) QCM coated with self-assembled cystine-bearing 1,3-bridged calix[4]arenes for recognizing gas-phase butylamines. Chin J Chem 23:571–575

    Google Scholar 

  57. Liu CJ, Lin JT, Wang SH, Lin LG (2004) Chromogenic calixarene sensors for amine detection. Chem Sens 20:362–363

    Google Scholar 

  58. Cao Z, Li T, Yang XH, Wang KM, Lin HG, Yu RQ (1998) Studies on thickness-shear-mode acoustic wave pyridine sensor coated with calix[4]arenes. Chem J Chin Univ-Chin 19:882–884

    CAS  Google Scholar 

  59. Yao D-J, Yang Y-R, Tai C-C, Hsiao W-H, Ling Y-C (2007) A biochemical sensing system using an 11-MUA/calix[6]arene bilayer to sense amine vapors. J Micromech Microeng 17:1435–1441

    Article  CAS  Google Scholar 

  60. Brittle SA, Richardson TH, Hutchinson J, Hunter CA (2008) Comparing zinc and manganese porphyrin LB films as amine vapor sensing materials. Colloid Surf A 321:29–33

    Article  CAS  Google Scholar 

  61. Sarkar T, Ashraf PM, Srinives S, Mulchandani A (2018) Calixarene-functionalized single-walled carbon nanotubes for sensitive detection of volatile amines. Sens Actuat B 268:115–122

    Google Scholar 

  62. Sun T, Qi L, Li W, Li Y, Shuai X, Cai Z, Chen H, Qiao X, Ma L (2019) Amphiphilic calix[4]arenes as a highly selective gas chromatographic stationary phase for aromatic amine isomers. J Chromatog A. In press

    Google Scholar 

  63. Cao Z, Murayama K, Aoki K (2001) Thickness-shear-mode acoustic wave sensor for acetone vapor coated with C-ethylcalix[4]resorcinarene and C-H π interactions as a molecular recognition mechanism. Anal Chim Acta 448:47–59

    Article  CAS  Google Scholar 

  64. Rusanova TY, Kalach AV, Rumyantseva SS, Shtykov SN, Ryzhkina IS (2009) Determination of volatile organic compounds using piezosensors modified with the Langmuir-Blodgett films of calix[4]resorcinarene. J Anal Chem 64:1270–1274

    Article  CAS  Google Scholar 

  65. Ying M, Chunmeng Y, Ke L, Xiuqin C, Shaofei Z, Yu F (2015) Surface chemically assembly of calix[4]arene and its utilization in the development of a fluorescence sensing film for THF. Imaging Sci Photochem 33:67–76

    Google Scholar 

  66. Oueslati I, Paixao JA, Shkurenko A, Suwinska K, Seixas de Melo JS, Batista de Carvalho LAE (2014) Highly ordered luminescent calix[4]azacrown films showing an emission response selective to volatile tetrahydrofuran. J Mater Chem C 2:9012–9020

    Article  CAS  Google Scholar 

  67. Li YY, He XW, Zhang GZ, He JQ, Cheng JP (2004) Recognition of organic amines and alcohols using quartz crystal microbalance coated with novel amino acid-bearing 1,3-bridged calix[4]arenes. Acta Chim Sinica 62:194–198

    CAS  Google Scholar 

  68. Shirshov YM, Khoruzhenko VY, Kostyukevych KV, Khristosenko RV, Samoylova IA, Pavluchenko AS, Samoylov AV, Ushenin YV (2007) Analysis of some alcohol molecules based on the change of RGB components of interferentially colored calixarene films. Sens Actuators B 122:427–436

    Article  CAS  Google Scholar 

  69. Kostyukevych KV, Khristosenko RV, Shirshov YM, Kostyukevych SA, Samoylov AV, Kalchenko VI (2011) Multielement gas sensor based on surface plasmon resonance: recognition of alcohols by using calixarene films. Semicond Phys Quant Electron Optoelectron 14:313–320

    Article  CAS  Google Scholar 

  70. Kostyukevych KV, Khristosenko RV, Pavluchenko AS, Vakhula AA, Kazantseva ZI, Koshets IA, Shirshov YM (2016) A nanostructural model of ethanol adsorption in thin calixarene films. Sens Actuat B 223:470–480

    Google Scholar 

  71. Ting Z, Zhong C, Yun-Lin D, Ting-Ting C, Jing-Lin H, Lei-Tao X, Shu L (2013) Sensing mechanism and application for recognition of ethanol by calixarene supramolecules based on hydrogen bonds interaction. Chem J Chin Univ 34:1339–1346

    Google Scholar 

  72. Zou R-F, Cao Z, Zeng J-L, Dai Y-L, Sun L-X (2011) Characteristics and mechanism for host-guest recognition of isopropanol vapor based on calixarene supramolecules. Adv Mater Res 239–242:2050–2053

    Google Scholar 

  73. Kimura M, Yokokawa M, Fukawa T, Mihara T (2009) Calixarenes for sensing materials, calixarene-based composite materials, and sensor elements having sensing films formed from the composite materials, and sensors. Application: JP, JP Patent, 2011084487

    Google Scholar 

  74. Arduini A, Boldrini D, Pochini A, Secchi A, Ungaro R (1997) Selective calix[4]arene-based sensors for neutral organic analytes. In: Conference proceedings—Italian Physical Society, vol 54 (SAA ‘96, national meeting on sensors for advanced applications, 1996), pp 131–137

    Google Scholar 

  75. Guo W, Wang J, Wang C, He JQ, He XW, Cheng JP (2002) Design, synthesis, and enantiomeric recognition of dicyclodipeptide-bearing calix[4]arenes: a promising family for chiral gas sensor coatings. Tetrahedron Lett 43:5665–5667

    Article  CAS  Google Scholar 

  76. Kalchenko VI, Koshets IA, Matsas EP, Kopylov ON, Solovyov A, Kazantseva ZI, Shirshov YM (2002) Calixarene based QCM sensors array and its response to volatile organic vapors. Mater Sci 20:73–88

    CAS  Google Scholar 

  77. Dickert FL, Schuster O (1995) Supramolecular detection of solvent vapors with calixarenes: mass-sensitive sensors, molecular mechanics and BET studies. Microchim Acta 119:55–62

    Article  CAS  Google Scholar 

  78. Dickert FL, Baeumler UPA, Stathopulos H (1997) Mass-sensitive solvent vapor detection with calix[4]resorcinarenes: tuning sensitivity and predicting sensor effects. Anal Chem 69:1000–1005

    Google Scholar 

  79. Ozmen M, Ozbek Z, Bayrakci M, Ertul S, Ersoz M, Capan R (2014) Preparation and gas sensing properties of Langmuir-Blodgett thin films of calix[n]arenes: investigation of cavity effect. Sens Actuator B 195:156–164

    Article  CAS  Google Scholar 

  80. Ozmen M, Ozbek Z, Buyukcelebi S, Bayrakci M, Ertul S, Ersoz M, Capan R (2014) Fabrication of Langmuir-Blodgett thin films of calix[4]arenes and their gas sensing properties: investigation of upper rim para substituent effect. Sens Actuator B 190:502–511

    Article  CAS  Google Scholar 

  81. Ozmen M, Ozbek Z, Bayrakci M, Ertul S, Ersoz M, Capan R (2015) Preparation of Langmuir-Blodgett thin films of calix[6]arenes and p-tert butyl group effect on their gas sensing properties. Appl Surf Sci 359:364–371

    Article  CAS  Google Scholar 

  82. Lemli B, Peles J, Kollár L, Nagy G, Kunsági-Máté S (2006) The rate of host-guest complex formation of some calixarene derivatives towards neutral aromatic guests. Supramol Chem 18:251–256

    Article  CAS  Google Scholar 

  83. Capan R, Ozbek Z, Goktas H, Sen S, Ince FG, Ozel ME, Stanciu GA, Davis F (2010) Characterization of Langmuir-Blodgett films of a calix[8]arene and sensing properties towards volatile organic vapors. Sens Actuator B 148:358–365

    Google Scholar 

  84. Ince FG, Goktas H, Ozbek HZ, Capan R, Davis F (2010) Plasma polymerized calixarene thin films and their sensing properties to chloroform vapors. Mol Cryst Liq Cryst 521:104–111

    Article  CAS  Google Scholar 

  85. Ozbek Z, Capan R, Goktas H, Sen S, Ince FG, Ozel ME, Davis F (2011) Optical parameters of calix[4]arene films and their response to volatile organic vapors. Sens Actuator B 158:235–240

    Google Scholar 

  86. Şen S, Çapan R, Özbek Z, Özel ME, Stanciu GA, Davis F (2019) Calix[4]amine Langmuir-Blodgett thin film sensing properties against volatile organic compounds. J Phys Conf Series 1186012011

    Google Scholar 

  87. Capan R, Goktas H, Ozbek Z, Sen S, Ozel ME, Davis F (2015) Langmuir-Blodgett thin film for chloroform detection. Appl Surf Sci 350:129–134

    Google Scholar 

  88. Capan I, Bayrakci M, Erdogan M, Ozmen M (2019) Fabrication of thin films of phosphonated calix[4]arene bearing crown ether and their gas sensing properties. IEEE Sens J 19:838–845

    Article  CAS  Google Scholar 

  89. Temel F, Tabakci M (2016) Calix[4]arene coated QCM sensors for detection of VOC emissions: methylene chloride sensing studies. Talanta 153:221–227

    Article  CAS  Google Scholar 

  90. Capan I, Hassan AK, Abbas RR (2017) Fabrication, characterization and gas sensing properties of gold nanoparticle and calixarene multilayers. Bull Mat Sci 40:31–36

    Article  CAS  Google Scholar 

  91. Schierbaum KD, Weiss T, Thoden van Velzen EU, Engbersen JFJ, Reinhoudt DN, Gopel W (1994) Molecular recognition by self-assembled monolayers of cavitand receptors. Science 265:1413–5

    Article  CAS  Google Scholar 

  92. Munoz S, Nakamoto T, Moriizumi T (1999) Comparisons between calixarene Langmuir-Blodgett and cast films in odor sensing systems. Sens Mater 11:427–435

    CAS  Google Scholar 

  93. Kimura M, Yokokawa M, Sato S, Fukawa T, Mihara T (2011) Volatile organic compound sensing by gold nanoparticles capped with calix[4]arene ligand. Chem Lett 40:1402–1404

    Article  CAS  Google Scholar 

  94. Hassan AK, Ray AK, Nabok AV, Davis F (2001) Spun films of novel calix[4]resorcinarene derivatives for benzene vapor sensing. Sens Actuat B 77:638–641

    Article  CAS  Google Scholar 

  95. Nabok AV, Hassan AK, Ray AK (2000) Condensation of organic vapors within nanoporous calixarene thin films. J Mater Chem 10:189–194

    Google Scholar 

  96. Erdoğan M, Capan R, Davis F (2010) Swelling behavior of calixarene film exposed to various organic vapors by surface plasmon resonance technique. Sens Actuat B 145:66–70

    Article  CAS  Google Scholar 

  97. Topliss SM, James SW, Davis F, Higson SPJ, Tatam RP (2010) Long period grating based selective vapor sensing of volatile organic compounds. Sens Actuat B 143:629–634

    Article  CAS  Google Scholar 

  98. Hromadka J, James S, Davis F, Tatam RP, Crump D, Korposh S (2015) Detection of the volatile organic compounds emitted from paints using optical fiber long period grating modified with the mesoporous nanoscale coating. In: Proceedings of SPIE. 9634 96344K1-4

    Google Scholar 

  99. Hromadka J, Korposh S, Partridge M, James SW, Davis F, Crump D, Tatam RP (2017) Volatile organic compounds sensing using optical fiber long period grating with mesoporous nano-scale coating. Sensors 17:205

    Article  CAS  Google Scholar 

  100. Hromadka J, Korposh S, Partridge MC, James SW, Davis F, Crump D, Tatam RP (2017) Multi-parameter measurements using optical fiber long period gratings for indoor air quality monitoring. Sens Actuat B. 244:217–225

    Article  CAS  Google Scholar 

  101. Hayden O, Latif U, Dickert FL (2011) A mass-sensitive approach for the detection of anesthetic xenon. Aust J Chem 64:1628–1632

    Article  CAS  Google Scholar 

  102. Su K, Jiang F, Qian J, Pang J, Hu F, Bawaked SM, Mokhtar M, Al-Thabaiti SA, Hong M (2015) Bridging different Co4-calix[4]arene building blocks into grids, cages and 2D polymers with chiral camphoric acid. CrystEngComm 17:1750–1753

    Article  CAS  Google Scholar 

  103. Li T, Cao Z, Lin H, Yang C, Wang K, Yu R (1999) Host-guest recognition of anisole by thickness-shear mode acoustic wave sensor coated with calixarenes. Fenxi Ceshi Xuebao 18:5–8

    Google Scholar 

  104. Walte A, Muenchmeyer W (2002) Gas sensor with selective adsorbent. Application: WO, WO Patent 2002-DE1889, 2002-095389

    Google Scholar 

  105. Nomura E, Yamabe M, Suruga T, Tachibana S (2010) Gas sensor for toxic volatile organic compounds. Application: WO, WO Patent 2009-JP65884, 2010027104

    Google Scholar 

  106. Koshets IA, Kazantseva ZI, Shirshov YM, Cherenok SA, Kalchenko VI (2005) Calixarene films as sensitive coatings for QCM-based gas sensors. Sens Actuat B 106:177–181

    Article  CAS  Google Scholar 

  107. Tisserant J-N, Beck S, Barf M-M, Kowalsky W, Lovrincic R (2018) Nanoporous organic field-effect transistors employing a calixarene dielectric for SUB-ppb gas sensing. Adv Electron Mater 4:1800362

    Article  CAS  Google Scholar 

  108. Pinalli R, Pedrini A, Dalcanale E (2018) Environmental gas sensing with cavitands. Chem Eur J 24:1010–1019

    Google Scholar 

  109. Nan S, Ying-Wei Y (2014) Applications of pillarenes, an emerging class of synthetic Macrocycles Sci China Chem 57:1185–1198

    Google Scholar 

  110. Yao Y, Wei P, Yue S, Li J, Xue M (2014) Amphiphilic pillar[5]arenes: influence of chemical structure on self-assembly morphology and application in gas response and l-DNA condensation. RSC Adv 4:60426047

    Google Scholar 

  111. Lai CS, Moody GJ, Thomas JDR, Mulligan DC, Stoddart JF, Zarzycki R (1988) Piezoelectric quartz crystal detection of benzene vapor using chemically modified cyclodextrins. J Chem Soc Perkin Trans II 319–324

    Google Scholar 

  112. Nag S, Duarte L, Bertrand E, Celton V, Castro M, Choudhary V, Guegan P, Feller J-F (2014) Ultrasensitive QRS made by supramolecular assembly of functionalized cyclodextrins and graphene for the detection of lung cancer VOC biomarkers. J Mater Chem B 2:6571–6579

    Article  CAS  Google Scholar 

  113. Nabok AV, Davis F, Hassan AK, Ray AK, Majeed R, Ghassemlooy Z (1999) Polyelectrolyte self-assembled thin films containing cyclo-tetrachromotropylene for chemical and biosensing. Mater Sci Eng C8-C9:123–6

    Google Scholar 

  114. Schramm U, Roesky CEO, Winter S, Rechenbach S, Boeker P, Schulze Lammers P, Weber E, Bargon J (1999) Temperature dependence of an ammonia sensor in humid air based on a cryptophane-coated quartz microbalance. Sens Actuat B 57:233–237

    Google Scholar 

  115. Souteyrand E, Nicolas D, Martin JR, Chauvet JP, Perez H (1996) Behavior of cryptophane molecules in gas media. Sens Actuat B 33:182–187

    Google Scholar 

  116. Benounis M, Jaffrezic-Renault N, Dutasta J-P, Cherif K, Abdelghani A (2005) Study of a new evanescent wave optical fiber sensor for methane detection based on cryptophane molecules. Sens Actuat B 107:32–39

    Article  CAS  Google Scholar 

  117. Albert MS, Balamore D (1998) Development of hyperpolarized noble gas MRI. Nucl Inst Meth Phys Res A 402:441–453

    Article  CAS  Google Scholar 

  118. Bartik K, Luhmer M, Dutasta J-P, Collet A, Reisse J (1998) 129 Xe and 1H NMR study of the reversible trapping of xenon by cryptophane A in organic solution. J Am Chem Soc 120:784–791

    Article  CAS  Google Scholar 

  119. Barrow SJ, Kasera S, Rowland MJ, del Barrio J, Scherman OA (2015) Cucurbituril-based molecular recognition. Chem Rev 115:12320–12406

    Article  CAS  Google Scholar 

  120. Pinjari RV, Gejji SP (2010) NMR study of the reversible trapping of SF6 by cucurbit[6]uril in aqueous solution. J Phys Chem A 114:2338–2343

    Google Scholar 

  121. Lim S, Kim H, Selvapalam N, Kim K-J, Cho SJ, Seo G, Kim K (2008) Cucurbit[6]uril: organic molecular porous material with permanent porosity, exceptional stability, and acetylene sorption properties. Angew Chem Int Ed 47:3352–3355

    Article  CAS  Google Scholar 

  122. Florea M, Nau WM (2011) Strong binding of hydrocarbons to cucurbituril probed by fluorescent dye displacement: a supramolecular gas-sensing ensemble. Angew Chem Int Ed 50:9338–9342

    Google Scholar 

Download references

Acknowledgements

This work was carried out with financial assistance from the Brazilian funding agencies: São Paulo Research Foundation—FAPESP (2013/14262-7) and National Council for Scientific and Technological Development—CNPq.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Flavio M. Shimizu .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Davis, F., Higson, S.P.J., Oliveira Jr., O.N., Shimizu, F.M. (2020). Calixarene-Based Gas Sensors. In: Thomas, S., Joshi, N., Tomer, V. (eds) Functional Nanomaterials. Materials Horizons: From Nature to Nanomaterials. Springer, Singapore. https://doi.org/10.1007/978-981-15-4810-9_17

Download citation

Publish with us

Policies and ethics