Skip to main content

Circadian Rhythms Disruption

  • Chapter
  • First Online:
Sleep Disorders in Parkinson’s Disease
  • 565 Accesses

Abstract

Abnormal circadian rhythm is quite common in PD patients, such as sleep-wake cycles, motor symptoms fluctuation, endocrine changes, autonomic dysfunction, and so on. It may have a negative effect on life quality of the patients. In addition, the disrupted biorhythm may alter the anti-oxidative ability, the autophagy level, and the mitochondrial function and thus accelerate disease progression. Recent studies showed that biorhythm modification, such as light therapy and physical exercise, can improve the motor symptoms and delay disease progression. Based on this, neurological clinicians should get more attention to circadian dysfunction of PD, and the circadian therapy may be a new hopeful strategy for PD.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 49.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 64.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 99.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Edgar RS, et al. Peroxiredoxins are conserved markers of circadian rhythms. Nature. 2012;485:459–64. https://doi.org/10.1038/nature11088.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  2. Konopka RJ, Benzer S. Clock mutants of Drosophila melanogaster. Proc Natl Acad Sci U S A. 1971;68:2112–6.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  3. Lowrey PL, Takahashi JS. Mammalian circadian biology: elucidating genome-wide levels of temporal organization. Annu Rev Genomics Hum Genet. 2004;5:407–41. https://doi.org/10.1146/annurev.genom.5.061903.175925.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  4. Hastings MH, Reddy AB, Maywood ES. A clockwork web: circadian timing in brain and periphery, in health and disease. Nat Rev Neurosci. 2003;4:649–61. https://doi.org/10.1038/nrn1177.

    Article  CAS  PubMed  Google Scholar 

  5. O’Neill JS, Reddy AB. Circadian clocks in human red blood cells. Nature. 2011;469:498–503. https://doi.org/10.1038/nature09702.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  6. Buhr ED, Takahashi JS. Molecular components of the mammalian circadian clock. Handb Exp Pharmacol. 2013;217:3–27. https://doi.org/10.1007/978-3-642-25950-0_1.

    Article  CAS  Google Scholar 

  7. Dibner C, Schibler U, Albrecht U. The mammalian circadian timing system: organization and coordination of central and peripheral clocks. Annu Rev Physiol. 2010;72:517–49. https://doi.org/10.1146/annurev-physiol-021909-135821.

    Article  CAS  PubMed  Google Scholar 

  8. Liu AC, et al. Intercellular coupling confers robustness against mutations in the SCN circadian clock network. Cell. 2007;129:605–16. https://doi.org/10.1016/j.cell.2007.02.047.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  9. Mohawk JA, Takahashi JS. Cell autonomy and synchrony of suprachiasmatic nucleus circadian oscillators. Trends Neurosci. 2011;34:349–58. https://doi.org/10.1016/j.tins.2011.05.003.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  10. Buhr ED, Yoo SH, Takahashi JS. Temperature as a universal resetting cue for mammalian circadian oscillators. Science. 2010;330:379–85. https://doi.org/10.1126/science.1195262.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  11. Yang X, Lamia KA, Evans RM. Nuclear receptors, metabolism, and the circadian clock. Cold Spring Harb Symp Quant Biol. 2007;72:387–94. https://doi.org/10.1101/sqb.2007.72.058.

    Article  CAS  PubMed  Google Scholar 

  12. Huang N, et al. Crystal structure of the heterodimeric CLOCK:BMAL1 transcriptional activator complex. Science. 2012;337:189–94. https://doi.org/10.1126/science.1222804.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  13. Kume K, et al. mCRY1 and mCRY2 are essential components of the negative limb of the circadian clock feedback loop. Cell. 1999;98:193–205.

    Article  CAS  PubMed  Google Scholar 

  14. Busino L, et al. SCFFbxl3 controls the oscillation of the circadian clock by directing the degradation of cryptochrome proteins. Science. 2007;316:900–4. https://doi.org/10.1126/science.1141194.

    Article  CAS  PubMed  Google Scholar 

  15. Siepka SM, et al. Circadian mutant overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell. 2007;129:1011–23. https://doi.org/10.1016/j.cell.2007.04.030.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  16. Sato TK, et al. A functional genomics strategy reveals Rora as a component of the mammalian circadian clock. Neuron. 2004;43:527–37. https://doi.org/10.1016/j.neuron.2004.07.018.

    Article  CAS  PubMed  Google Scholar 

  17. Preitner N, et al. The orphan nuclear receptor REV-ERBalpha controls circadian transcription within the positive limb of the mammalian circadian oscillator. Cell. 2002;110:251–60.

    Article  CAS  PubMed  Google Scholar 

  18. Ukai-Tadenuma M, et al. Delay in feedback repression by cryptochrome 1 is required for circadian clock function. Cell. 2011;144:268–81. https://doi.org/10.1016/j.cell.2010.12.019.

    Article  CAS  PubMed  Google Scholar 

  19. Liu AC, et al. Redundant function of REV-ERBalpha and beta and non-essential role for Bmal1 cycling in transcriptional regulation of intracellular circadian rhythms. PLoS Genet. 2008;4:e1000023. https://doi.org/10.1371/journal.pgen.1000023.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  20. Crosio C, Cermakian N, Allis CD, Sassone-Corsi P. Light induces chromatin modification in cells of the mammalian circadian clock. Nat Neurosci. 2000;3:1241–7. https://doi.org/10.1038/81767.

    Article  CAS  PubMed  Google Scholar 

  21. Doi M, Hirayama J, Sassone-Corsi P. Circadian regulator CLOCK is a histone acetyltransferase. Cell. 2006;125:497–508. https://doi.org/10.1016/j.cell.2006.03.033.

    Article  CAS  PubMed  Google Scholar 

  22. Duong HA, Robles MS, Knutti D, Weitz CJ. A molecular mechanism for circadian clock negative feedback. Science. 2011;332:1436–9. https://doi.org/10.1126/science.1196766.

    Article  CAS  PubMed  Google Scholar 

  23. Naruse Y, et al. Circadian and light-induced transcription of clock gene Per1 depends on histone acetylation and deacetylation. Mol Cell Biol. 2004;24:6278–87. https://doi.org/10.1128/MCB.24.14.6278-6287.2004.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  24. Feng D, et al. A circadian rhythm orchestrated by histone deacetylase 3 controls hepatic lipid metabolism. Science. 2011;331:1315–9. https://doi.org/10.1126/science.1198125.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  25. Keene AC, Duboue ER. The origins and evolution of sleep. J Exp Biol. 2018;221:jeb159533. https://doi.org/10.1242/jeb.159533.

    Article  PubMed  PubMed Central  Google Scholar 

  26. Spiegel K, Leproult R, Van Cauter E. Impact of sleep debt on metabolic and endocrine function. Lancet. 1999;354:1435–9. https://doi.org/10.1016/S0140-6736(99)01376-8.

    Article  CAS  PubMed  Google Scholar 

  27. Ding F, et al. Changes in the composition of brain interstitial ions control the sleep-wake cycle. Science. 2016;352:550–5. https://doi.org/10.1126/science.aad4821.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  28. Tononi G, Cirelli C. Sleep and the price of plasticity: from synaptic and cellular homeostasis to memory consolidation and integration. Neuron. 2014;81:12–34. https://doi.org/10.1016/j.neuron.2013.12.025.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  29. de Vivo L, et al. Ultrastructural evidence for synaptic scaling across the wake/sleep cycle. Science. 2017;355:507–10. https://doi.org/10.1126/science.aah5982.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  30. Marshall L, Helgadottir H, Molle M, Born J. Boosting slow oscillations during sleep potentiates memory. Nature. 2006;444:610–3. https://doi.org/10.1038/nature05278.

    Article  CAS  PubMed  Google Scholar 

  31. Blum ID, Bell B, Wu MN. Time for bed: genetic mechanisms mediating the circadian regulation of sleep. Trends Genet. 2018;34:379–88. https://doi.org/10.1016/j.tig.2018.01.001.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  32. Toh KL, et al. An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science. 2001;291:1040–3.

    Article  CAS  PubMed  Google Scholar 

  33. Patke A, et al. Mutation of the human circadian clock gene CRY1 in familial delayed sleep phase disorder. Cell. 2017;169:203–215 e213. https://doi.org/10.1016/j.cell.2017.03.027.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  34. Zhang L, et al. A PERIOD3 variant causes a circadian phenotype and is associated with a seasonal mood trait. Proc Natl Acad Sci U S A. 2016;113:E1536–44. https://doi.org/10.1073/pnas.1600039113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  35. Xu Y, et al. Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature. 2005;434:640–4. https://doi.org/10.1038/nature03453.

    Article  CAS  PubMed  Google Scholar 

  36. Katzenberg D, et al. A CLOCK polymorphism associated with human diurnal preference. Sleep. 1998;21:569–76.

    Article  CAS  PubMed  Google Scholar 

  37. Hirano A, et al. A Cryptochrome 2 mutation yields advanced sleep phase in humans. elife. 2016;5:e16695. https://doi.org/10.7554/eLife.16695.

    Article  PubMed  PubMed Central  Google Scholar 

  38. He Y, et al. The transcriptional repressor DEC2 regulates sleep length in mammals. Science. 2009;325:866–70. https://doi.org/10.1126/science.1174443.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  39. Pellegrino R, et al. A novel BHLHE41 variant is associated with short sleep and resistance to sleep deprivation in humans. Sleep. 2014;37:1327–36. https://doi.org/10.5665/sleep.3924.

    Article  PubMed  PubMed Central  Google Scholar 

  40. Ebisawa T, et al. Association of structural polymorphisms in the human period3 gene with delayed sleep phase syndrome. EMBO Rep. 2001;2:342–6. https://doi.org/10.1093/embo-reports/kve070.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  41. Wulff K, Gatti S, Wettstein JG, Foster RG. Sleep and circadian rhythm disruption in psychiatric and neurodegenerative disease. Nat Rev Neurosci. 2010;11:589–99. https://doi.org/10.1038/nrn2868.

    Article  CAS  PubMed  Google Scholar 

  42. Sterniczuk R, Dyck RH, Laferla FM, Antle MC. Characterization of the 3xTg-AD mouse model of Alzheimer’s disease: part 1. Circadian changes. Brain Res. 2010;1348:139–48. https://doi.org/10.1016/j.brainres.2010.05.013.

    Article  CAS  PubMed  Google Scholar 

  43. Kudo T, Loh DH, Truong D, Wu Y, Colwell CS. Circadian dysfunction in a mouse model of Parkinson’s disease. Exp Neurol. 2011;232:66–75. https://doi.org/10.1016/j.expneurol.2011.08.003.

    Article  PubMed  Google Scholar 

  44. Oakeshott S, et al. Circadian abnormalities in motor activity in a BAC transgenic mouse model of Huntington’s disease. PLoS Curr. 2011;3:RRN1225. https://doi.org/10.1371/currents.RRN1225.

    Article  PubMed  PubMed Central  Google Scholar 

  45. Kondratova AA, Kondratov RV. The circadian clock and pathology of the ageing brain. Nat Rev Neurosci. 2012;13:325–35. https://doi.org/10.1038/nrn3208.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  46. Altun A, Ugur-Altun B. Melatonin: therapeutic and clinical utilization. Int J Clin Pract. 2007;61:835–45. https://doi.org/10.1111/j.1742-1241.2006.01191.x.

    Article  CAS  PubMed  Google Scholar 

  47. Reiter RJ, Acuna-Castroviejo D, Tan DX, Burkhardt S. Free radical-mediated molecular damage. Mechanisms for the protective actions of melatonin in the central nervous system. Ann N Y Acad Sci. 2001;939:200–15.

    Article  CAS  PubMed  Google Scholar 

  48. Hardeland R. Antioxidative protection by melatonin: multiplicity of mechanisms from radical detoxification to radical avoidance. Endocrine. 2005;27:119–30.

    Article  CAS  PubMed  Google Scholar 

  49. Bordet R, et al. Study of circadian melatonin secretion pattern at different stages of Parkinson’s disease. Clin Neuropharmacol. 2003;26:65–72.

    Article  CAS  PubMed  Google Scholar 

  50. Bolitho SJ, et al. Disturbances in melatonin secretion and circadian sleep-wake regulation in Parkinson disease. Sleep Med. 2014;15:342–7. https://doi.org/10.1016/j.sleep.2013.10.016.

    Article  CAS  PubMed  Google Scholar 

  51. Videnovic A, et al. Circadian melatonin rhythm and excessive daytime sleepiness in Parkinson disease. JAMA Neurol. 2014;71:463–9. https://doi.org/10.1001/jamaneurol.2013.6239.

    Article  PubMed  PubMed Central  Google Scholar 

  52. Breen DP, et al. Sleep and circadian rhythm regulation in early Parkinson disease. JAMA Neurol. 2014;71:589–95. https://doi.org/10.1001/jamaneurol.2014.65.

    Article  PubMed  PubMed Central  Google Scholar 

  53. Feng Z, et al. Melatonin alleviates behavioral deficits associated with apoptosis and cholinergic system dysfunction in the APP 695 transgenic mouse model of Alzheimer’s disease. J Pineal Res. 2004;37:129–36. https://doi.org/10.1111/j.1600-079X.2004.00144.x.

    Article  CAS  PubMed  Google Scholar 

  54. Mishima K, et al. Melatonin secretion rhythm disorders in patients with senile dementia of Alzheimer’s type with disturbed sleep-waking. Biol Psychiatry. 1999;45:417–21.

    Article  CAS  PubMed  Google Scholar 

  55. Singer C, et al. A multicenter, placebo-controlled trial of melatonin for sleep disturbance in Alzheimer’s disease. Sleep. 2003;26:893–901.

    Article  PubMed  Google Scholar 

  56. Aziz NA, et al. Delayed onset of the diurnal melatonin rise in patients with Huntington’s disease. J Neurol. 2009;256:1961–5. https://doi.org/10.1007/s00415-009-5196-1.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  57. Kondratov RV, Vykhovanets O, Kondratova AA, Antoch MP. Antioxidant N-acetyl-L-cysteine ameliorates symptoms of premature aging associated with the deficiency of the circadian protein BMAL1. Aging (Albany NY). 2009;1:979–87. https://doi.org/10.18632/aging.100113.

    Article  CAS  Google Scholar 

  58. Klionsky DJ. Autophagy revisited: a conversation with Christian de Duve. Autophagy. 2008;4:740–3.

    Article  PubMed  Google Scholar 

  59. Ma D, Panda S, Lin JD. Temporal orchestration of circadian autophagy rhythm by C/EBPbeta. EMBO J. 2011;30:4642–51. https://doi.org/10.1038/emboj.2011.322.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  60. Reme C, Wirz-Justice A, Rhyner A, Hofmann S. Circadian rhythm in the light response of rat retinal disk-shedding and autophagy. Brain Res. 1986;369:356–60.

    Article  CAS  PubMed  Google Scholar 

  61. Pfeifer U, Scheller H. A morphometric study of cellular autophagy including diurnal variations in kidney tubules of normal rats. J Cell Biol. 1975;64:608–21.

    Article  CAS  PubMed  Google Scholar 

  62. Huang G, Zhang F, Ye Q, Wang H. The circadian clock regulates autophagy directly through the nuclear hormone receptor Nr1d1/rev-erbalpha and indirectly via Cebpb/(C/ebpbeta) in zebrafish. Autophagy. 2016;12:1292–309. https://doi.org/10.1080/15548627.2016.1183843.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  63. He Y, et al. Circadian rhythm of autophagy proteins in hippocampus is blunted by sleep fragmentation. Chronobiol Int. 2016;33:553–60. https://doi.org/10.3109/07420528.2015.1137581.

    Article  CAS  PubMed  Google Scholar 

  64. Li S, Wang Y, Wang F, Hu LF, Liu CF. A new perspective for Parkinson’s disease: circadian rhythm. Neurosci Bull. 2017;33:62–72. https://doi.org/10.1007/s12264-016-0089-7.

    Article  CAS  PubMed  Google Scholar 

  65. Rothman SM, Mattson MP. Sleep disturbances in Alzheimer’s and Parkinson’s diseases. NeuroMolecular Med. 2012;14:194–204. https://doi.org/10.1007/s12017-012-8181-2.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  66. Shen Y, Huang JY, Li J, Liu CF. Excessive daytime sleepiness in Parkinson’s disease: clinical implications and management. Chin Med J. 2018;131:974–81. https://doi.org/10.4103/0366-6999.229889.

    Article  PubMed  PubMed Central  Google Scholar 

  67. van Hilten JJ, et al. Diurnal effects of motor activity and fatigue in Parkinson’s disease. J Neurol Neurosurg Psychiatry. 1993;56:874–7.

    Article  PubMed  PubMed Central  Google Scholar 

  68. Bonuccelli U, et al. Diurnal motor variations to repeated doses of levodopa in Parkinson’s disease. Clin Neuropharmacol. 2000;23:28–33.

    Article  CAS  PubMed  Google Scholar 

  69. Piccini P, et al. Diurnal worsening in Parkinson patients treated with levodopa. Riv Neurol. 1991;61:219–24.

    CAS  PubMed  Google Scholar 

  70. Fertl E, Auff E, Doppelbauer A, Waldhauser F. Circadian secretion pattern of melatonin in Parkinson’s disease. J Neural Transm Park Dis Dement Sect. 1991;3:41–7.

    Article  CAS  PubMed  Google Scholar 

  71. Breen DP, et al. Hypothalamic volume loss is associated with reduced melatonin output in Parkinson’s disease. Mov Disord. 2016;31:1062–6. https://doi.org/10.1002/mds.26592.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  72. Bogaerts V, Theuns J, van Broeckhoven C. Genetic findings in Parkinson’s disease and translation into treatment: a leading role for mitochondria? Genes Brain Behav. 2008;7:129–51. https://doi.org/10.1111/j.1601-183X.2007.00342.x.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  73. Hartmann A, Veldhuis JD, Deuschle M, Standhardt H, Heuser I. Twenty-four hour cortisol release profiles in patients with Alzheimer’s and Parkinson’s disease compared to normal controls: ultradian secretory pulsatility and diurnal variation. Neurobiol Aging. 1997;18:285–9.

    Article  CAS  PubMed  Google Scholar 

  74. Mizobuchi M, Hineno T, Kakimoto Y, Hiratani K. Increase of plasma adrenocorticotrophin and cortisol in 1-methyl-4-phenyl-1,2,3,6-tetrahydropyridine (MPTP)-treated dogs. Brain Res. 1993;612:319–21.

    Article  CAS  PubMed  Google Scholar 

  75. Zhong G, Bolitho S, Grunstein R, Naismith SL, Lewis SJ. The relationship between thermoregulation and REM sleep behaviour disorder in Parkinson’s disease. PLoS One. 2013;8:e72661. https://doi.org/10.1371/journal.pone.0072661.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  76. Cagnacci A, et al. Effect of naloxone on body temperature in postmenopausal women with Parkinson’s disease. Life Sci. 1990;46:1241–7.

    Article  CAS  PubMed  Google Scholar 

  77. Suzuki K, et al. Circadian variation of core body temperature in Parkinson disease patients with depression: a potential biological marker for depression in Parkinson disease. Neuropsychobiology. 2007;56:172–9. https://doi.org/10.1159/000119735.

    Article  PubMed  Google Scholar 

  78. Schmidt C, et al. Loss of nocturnal blood pressure fall in various extrapyramidal syndromes. Mov Disord. 2009;24:2136–42. https://doi.org/10.1002/mds.22767.

    Article  PubMed  Google Scholar 

  79. Ejaz AA, Sekhon IS, Munjal S. Characteristic findings on 24-h ambulatory blood pressure monitoring in a series of patients with Parkinson’s disease. Eur J Intern Med. 2006;17:417–20. https://doi.org/10.1016/j.ejim.2006.02.020.

    Article  PubMed  Google Scholar 

  80. Berganzo K, et al. Nocturnal hypertension and dysautonomia in patients with Parkinson’s disease: are they related? J Neurol. 2013;260:1752–6. https://doi.org/10.1007/s00415-013-6859-5.

    Article  CAS  PubMed  Google Scholar 

  81. Ruan GX, Allen GC, Yamazaki S, McMahon DG. An autonomous circadian clock in the inner mouse retina regulated by dopamine and GABA. PLoS Biol. 2008;6:e249. https://doi.org/10.1371/journal.pbio.0060249.

    Article  CAS  PubMed  Google Scholar 

  82. Struck LK, Rodnitzky RL, Dobson JK. Circadian fluctuations of contrast sensitivity in Parkinson’s disease. Neurology. 1990;40:467–70.

    Article  CAS  PubMed  Google Scholar 

  83. Cai Y, Liu S, Sothern RB, Xu S, Chan P. Expression of clock genes Per1 and Bmal1 in total leukocytes in health and Parkinson’s disease. Eur J Neurol. 2010;17:550–4. https://doi.org/10.1111/j.1468-1331.2009.02848.x.

    Article  CAS  PubMed  Google Scholar 

  84. Ding H, et al. Decreased expression of Bmal2 in patients with Parkinson’s disease. Neurosci Lett. 2011;499:186–8. https://doi.org/10.1016/j.neulet.2011.05.058.

    Article  CAS  PubMed  Google Scholar 

  85. Gu Z, et al. Association of ARNTL and PER1 genes with Parkinson’s disease: a case-control study of Han Chinese. Sci Rep. 2015;5:15891. https://doi.org/10.1038/srep15891.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  86. Hood S, et al. Endogenous dopamine regulates the rhythm of expression of the clock protein PER2 in the rat dorsal striatum via daily activation of D2 dopamine receptors. J Neurosci. 2010;30:14046–58. https://doi.org/10.1523/JNEUROSCI.2128-10.2010.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  87. Mattam U, Jagota A. Daily rhythms of serotonin metabolism and the expression of clock genes in suprachiasmatic nucleus of rotenone-induced Parkinson’s disease male Wistar rat model and effect of melatonin administration. Biogerontology. 2015;16:109–23. https://doi.org/10.1007/s10522-014-9541-0.

    Article  CAS  PubMed  Google Scholar 

  88. Lin Q, et al. Promoter methylation analysis of seven clock genes in Parkinson’s disease. Neurosci Lett. 2012;507:147–50. https://doi.org/10.1016/j.neulet.2011.12.007.

    Article  CAS  PubMed  Google Scholar 

  89. Dudley CA, et al. Altered patterns of sleep and behavioral adaptability in NPAS2-deficient mice. Science. 2003;301:379–83. https://doi.org/10.1126/science.1082795.

    Article  CAS  PubMed  Google Scholar 

  90. Bunger MK, et al. Mop3 is an essential component of the master circadian pacemaker in mammals. Cell. 2000;103:1009–17.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  91. Xie Z, et al. Smooth-muscle BMAL1 participates in blood pressure circadian rhythm regulation. J Clin Invest. 2015;125:324–36. https://doi.org/10.1172/JCI76881.

    Article  PubMed  Google Scholar 

  92. Kandalepas PC, Mitchell JW, Gillette MU. Melatonin signal transduction pathways require E-box-mediated transcription of Per1 and Per2 to reset the SCN clock at dusk. PLoS One. 2016;11:e0157824. https://doi.org/10.1371/journal.pone.0157824.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  93. Paus S, et al. Bright light therapy in Parkinson’s disease: a pilot study. Mov Disord. 2007;22:1495–8. https://doi.org/10.1002/mds.21542.

    Article  PubMed  Google Scholar 

  94. Willis GL, Turner EJ. Primary and secondary features of Parkinson’s disease improve with strategic exposure to bright light: a case series study. Chronobiol Int. 2007;24:521–37. https://doi.org/10.1080/07420520701420717.

    Article  PubMed  Google Scholar 

  95. Willis GL, Moore C, Armstrong SM. A historical justification for and retrospective analysis of the systematic application of light therapy in Parkinson’s disease. Rev Neurosci. 2012;23:199–226. https://doi.org/10.1515/revneuro-2011-0072.

    Article  CAS  PubMed  Google Scholar 

  96. Yamanaka Y, et al. Differential regulation of circadian melatonin rhythm and sleep-wake cycle by bright lights and nonphotic time cues in humans. Am J Physiol Regul Integr Comp Physiol. 2014;307:R546–57. https://doi.org/10.1152/ajpregu.00087.2014.

    Article  CAS  PubMed  Google Scholar 

  97. Yamanaka Y, et al. Morning and evening physical exercise differentially regulate the autonomic nervous system during nocturnal sleep in humans. Am J Physiol Regul Integr Comp Physiol. 2015;309:R1112–21. https://doi.org/10.1152/ajpregu.00127.2015.

    Article  CAS  PubMed  Google Scholar 

  98. Yasumoto Y, Nakao R, Oishi K. Free access to a running-wheel advances the phase of behavioral and physiological circadian rhythms and peripheral molecular clocks in mice. PLoS One. 2015;10:e0116476. https://doi.org/10.1371/journal.pone.0116476.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  99. Fonken LK, et al. Microglia inflammatory responses are controlled by an intrinsic circadian clock. Brain Behav Immun. 2015;45:171–9. https://doi.org/10.1016/j.bbi.2014.11.009.

    Article  CAS  PubMed  Google Scholar 

  100. Neufeld-Cohen A, et al. Circadian control of oscillations in mitochondrial rate-limiting enzymes and nutrient utilization by PERIOD proteins. Proc Natl Acad Sci U S A. 2016;113:E1673–82. https://doi.org/10.1073/pnas.1519650113.

    Article  CAS  PubMed  PubMed Central  Google Scholar 

  101. Li SY, et al. Long-term levodopa treatment accelerates the circadian rhythm dysfunction in a 6-hydroxydopamine rat model of Parkinson’s disease. Chin Med J. 2017;130:1085–92. https://doi.org/10.4103/0366-6999.204920.

    Article  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Huang, GD., Wang, YL. (2020). Circadian Rhythms Disruption. In: Liu, CF. (eds) Sleep Disorders in Parkinson’s Disease. Springer, Singapore. https://doi.org/10.1007/978-981-15-2481-3_9

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2481-3_9

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2480-6

  • Online ISBN: 978-981-15-2481-3

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics