Skip to main content

Gene Therapy for Choroidal Neovascularization

  • Chapter
  • First Online:
Choroidal Neovascularization
  • 436 Accesses

Abstract

The most common reason for untreatable serious loss of vision in patients aged 55+ in the developed world is age-related macular degeneration (AMD). A primary cause of serious vision loss related to AMD is choroidal neovascularization (CNV) related to neurovascular AMD (nAMD). nAMD typically presents with abnormalities in vessels caused by underlying choriocapillaris. It is common for newly created blood vessels to be leaky, which can cause irreversible damage to sensitive photoreceptor cells. A full understanding of the molecular causes of nAMD has yet to be attained; the cause of the disease and its progression are attributable to numerous causes, which include genetics, ethnicity, age, and diet. A number of growth factors are believed to be involved with the condition, vascular endothelial growth factor (VEGF) among them. Clinical outcomes have been considerably improved with the arrival of anti-VEGF therapy. In clinical trials, drug therapies have returned positive outcomes, but on a wider scale results have not been as impressive, even in environments where healthcare standards are high. As well as having limited therapeutic value, patients on these drug therapies must be injected every month for the rest of their lifetime for the benefits to continue, and so it is clear that improved therapies are required. With genetic retinal disorders, e.g., choroideremia, Leber’s congenital amaurosis, and retinitis pigmentosa, the potential for gene therapy has been explored; in recent times, its potential for treating AMD has also been investigated. This chapter will examine the newest advances in AMD gene therapy and offer a summary of those approved clinical trials that have tested gene therapy as an nAMD treatment.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 89.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. Bennett J. Taking stock of retinal gene therapy: looking back and moving forward. Mol Ther. 2017;25(5):1076–94.

    CAS  PubMed  PubMed Central  Google Scholar 

  2. Hafler BP. Clinical progress in inherited retinal degenerations: gene therapy clinical trials and advances in genetic sequencing. Retina. 2017;37(3):417–23.

    CAS  PubMed  PubMed Central  Google Scholar 

  3. Morral N, O'Neal W, Zhou H, Langston C, Beaudet A. Immune responses to reporter proteins and high viral dose limit duration of expression with adenoviral vectors: comparison of E2a wild type and E2a deleted vectors. Hum Gene Ther. 1997;8(10):1275–86.

    CAS  PubMed  Google Scholar 

  4. Gao GP, Yang Y, Wilson JM. Biology of adenovirus vectors with E1 and E4 deletions for liver-directed gene therapy. J Virol. 1996;70(12):8934–43.

    CAS  PubMed  PubMed Central  Google Scholar 

  5. Morral N, O’Neal W, Rice K, Leland M, Kaplan J, Piedra PA, et al. Administration of helper-dependent adenoviral vectors and sequential delivery of different vector serotype for long-term liver-directed gene transfer in baboons. Proc Natl Acad Sci USA. 1999;96(22):12816–21.

    CAS  PubMed  Google Scholar 

  6. Morral N, Parks RJ, Zhou H, Langston C, Schiedner G, Quinones J, et al. High doses of a helper-dependent adenoviral vector yield supraphysiological levels of alpha1-antitrypsin with negligible toxicity. Hum Gene Ther. 1998;9(18):2709–16.

    CAS  PubMed  Google Scholar 

  7. Kay MA, Nakai H. Looking into the safety of AAV vectors. Nature. 2003;424(6946):251.

    CAS  PubMed  Google Scholar 

  8. Lisowski L, Tay SS, Alexander IE. Adeno-associated virus serotypes for gene therapeutics. Curr Opin Pharmacol. 2015;24:59–67.

    CAS  PubMed  Google Scholar 

  9. Daya S, Berns KI. Gene therapy using adeno-associated virus vectors. Clin Microbiol Rev. 2008;21(4):583–93.

    CAS  PubMed  PubMed Central  Google Scholar 

  10. Stieger K, Cronin T, Bennett J, Rolling F. Adeno-associated virus mediated gene therapy for retinal degenerative diseases. Methods Mol Biol. 2011;807:179–218.

    CAS  PubMed  Google Scholar 

  11. Surace EM, Auricchio A. Versatility of AAV vectors for retinal gene transfer. Vis Res. 2008;48(3):353–9.

    CAS  PubMed  Google Scholar 

  12. Guy J, Feuer WJ, Davis JL, Porciatti V, Gonzalez PJ, Koilkonda RD, et al. Gene therapy for leber hereditary optic neuropathy: low- and medium-dose visual results. Ophthalmology. 2017;124(11):1621–34.

    PubMed  PubMed Central  Google Scholar 

  13. Heier JS, Kherani S, Desai S, Dugel P, Kaushal S, Cheng SH, et al. Intravitreous injection of AAV2-sFLT01 in patients with advanced neovascular age-related macular degeneration: a phase 1, open-label trial. Lancet. 2017;390(10089):50–61.

    CAS  PubMed  Google Scholar 

  14. Lee S, Kang IK, Kim JH, Jung BK, Park K, Chang H, et al. Relationship between neutralizing antibodies against adeno-associated virus in the vitreous and serum: effects on retinal gene therapy. Transl Vis Sci Technol. 2019;8(2):14.

    PubMed  PubMed Central  Google Scholar 

  15. Everson EM, Trobridge GD. Retroviral vector interactions with hematopoietic cells. Curr Opin Virol. 2016;21:41–6.

    CAS  PubMed  PubMed Central  Google Scholar 

  16. Kumar M, Keller B, Makalou N, Sutton RE. Systematic determination of the packaging limit of lentiviral vectors. Hum Gene Ther. 2001;12(15):1893–905.

    CAS  PubMed  Google Scholar 

  17. Booth C, Gaspar HB, Thrasher AJ. Treating immunodeficiency through HSC gene therapy. Trends Mol Med. 2016;22(4):317–27.

    CAS  PubMed  Google Scholar 

  18. Zufferey R, Dull T, Mandel RJ, Bukovsky A, Quiroz D, Naldini L, et al. Self-inactivating lentivirus vector for safe and efficient in vivo gene delivery. J Virol. 1998;72(12):9873–80.

    CAS  PubMed  PubMed Central  Google Scholar 

  19. Shaw A, Cornetta K. Design and potential of non-integrating lentiviral vectors. Biomedicine. 2014;2(1):14–35.

    Google Scholar 

  20. Streilein JW. Ocular immune privilege: therapeutic opportunities from an experiment of nature. Nat Rev Immunol. 2003;3(11):879–89.

    CAS  PubMed  Google Scholar 

  21. Yu-Wai-Man P. Genetic manipulation for inherited neurodegenerative diseases: myth or reality? Br J Ophthalmol. 2016;100(10):1322–31.

    PubMed  PubMed Central  Google Scholar 

  22. Cheng L, Toyoguchi M, Looney DJ, Lee J, Davidson MC, Freeman WR. Efficient gene transfer to retinal pigment epithelium cells with long-term expression. Retina. 2005;25(2):193–201.

    PubMed  PubMed Central  Google Scholar 

  23. Petrs-Silva H, Dinculescu A, Li Q, Min SH, Chiodo V, Pang JJ, et al. High-efficiency transduction of the mouse retina by tyrosine-mutant AAV serotype vectors. Mol Ther. 2009;17(3):463–71.

    CAS  PubMed  Google Scholar 

  24. Dalkara D, Kolstad KD, Caporale N, Visel M, Klimczak RR, Schaffer DV, et al. Inner limiting membrane barriers to AAV-mediated retinal transduction from the vitreous. Mol Ther. 2009;17(12):2096–102.

    CAS  PubMed  PubMed Central  Google Scholar 

  25. Lee SH, Colosi P, Lee H, Ohn YH, Kim SW, Kwak HW, et al. Laser photocoagulation enhances adeno-associated viral vector transduction of mouse retina. Hum Gene Ther Methods. 2014;25(1):83–91.

    CAS  PubMed  Google Scholar 

  26. Bennett J, Ashtari M, Wellman J, Marshall KA, Cyckowski LL, Chung DC, et al. AAV2 gene therapy readministration in three adults with congenital blindness. Sci Transl Med. 2012;4(120):120ra15.

    PubMed  PubMed Central  Google Scholar 

  27. Li Q, Miller R, Han PY, Pang J, Dinculescu A, Chiodo V, et al. Intraocular route of AAV2 vector administration defines humoral immune response and therapeutic potential. Mol Vis. 2008;14:1760–9.

    CAS  PubMed  PubMed Central  Google Scholar 

  28. Campochiaro PA. Gene transfer for ocular neovascularization and macular edema. Gene Ther. 2012;19(2):121–6.

    CAS  PubMed  Google Scholar 

  29. Campochiaro PA, Nguyen QD, Shah SM, Klein ML, Holz E, Frank RN, et al. Adenoviral vector-delivered pigment epithelium-derived factor for neovascular age-related macular degeneration: results of a phase I clinical trial. Hum Gene Ther. 2006;17(2):167–76.

    CAS  Google Scholar 

  30. Mori K, Duh E, Gehlbach P, Ando A, Takahashi K, Pearlman J, et al. Pigment epithelium-derived factor inhibits retinal and choroidal neovascularization. J Cell Physiol. 2001;188(2):253–63.

    CAS  PubMed  Google Scholar 

  31. Mori K, Gehlbach P, Ando A, McVey D, Wei L, Campochiaro PA. Regression of ocular neovascularization in response to increased expression of pigment epithelium-derived factor. Invest Ophthalmol Vis Sci. 2002;43(7):2428–34.

    PubMed  Google Scholar 

  32. Bouck N. PEDF: anti-angiogenic guardian of ocular function. Trends Mol Med. 2002;8(7):330–4.

    CAS  PubMed  Google Scholar 

  33. Ohno-Matsui K, Morita I, Tombran-Tink J, Mrazek D, Onodera M, Uetama T, et al. Novel mechanism for age-related macular degeneration: an equilibrium shift between the angiogenesis factors VEGF and PEDF. J Cell Physiol. 2001;189(3):323–33.

    CAS  PubMed  Google Scholar 

  34. Luo L, Uehara H, Zhang X, Das SK, Olsen T, Holt D, et al. Photoreceptor avascular privilege is shielded by soluble VEGF receptor-1. elife. 2013;2:e00324.

    PubMed  PubMed Central  Google Scholar 

  35. Lai CM, Estcourt MJ, Himbeck RP, Lee SY, Yew-San Yeo I, Luu C, et al. Preclinical safety evaluation of subretinal AAV2.sFlt-1 in non-human primates. Gene Ther. 2012;19(10):999–1009.

    CAS  PubMed  Google Scholar 

  36. Lai CM, Brankov M, Zaknich T, Lai YK, Shen WY, Constable IJ, et al. Inhibition of angiogenesis by adenovirus-mediated sFlt-1 expression in a rat model of corneal neovascularization. Hum Gene Ther. 2001;12(10):1299–310.

    CAS  PubMed  Google Scholar 

  37. Lai CM, Estcourt MJ, Wikstrom M, Himbeck RP, Barnett NL, Brankov M, et al. rAAV.sFlt-1 gene therapy achieves lasting reversal of retinal neovascularization in the absence of a strong immune response to the viral vector. Invest Ophthalmol Vis Sci. 2009;50(9):4279–87.

    PubMed  Google Scholar 

  38. Drga V, Plack CJ, Yasin I. Frequency tuning of the efferent effect on cochlear gain in humans. Adv Exp Med Biol. 2016;894:477–84.

    PubMed  Google Scholar 

  39. Rakoczy EP, Lai CM, Magno AL, Wikstrom ME, French MA, Pierce CM, et al. Gene therapy with recombinant adeno-associated vectors for neovascular age-related macular degeneration: 1 year follow-up of a phase 1 randomised clinical trial. Lancet. 2015;386(10011):2395–403.

    CAS  PubMed  Google Scholar 

  40. Constable IJ, Lai CM, Magno AL, French MA, Barone SB, Schwartz SD, et al. Gene therapy in neovascular age-related macular degeneration: three-year follow-up of a phase 1 randomized dose escalation trial. Am J Ophthalmol. 2017;177:150–8.

    CAS  PubMed  Google Scholar 

  41. Brown DM, Kaiser PK, Michels M, Soubrane G, Heier JS, Kim RY, et al. Ranibizumab versus verteporfin for neovascular age-related macular degeneration. N Engl J Med. 2006;355(14):1432–44.

    CAS  PubMed  Google Scholar 

  42. Constable IJ, Pierce CM, Lai CM, Magno AL, Degli-Esposti MA, French MA, et al. Phase 2a randomized clinical trial: safety and post hoc analysis of subretinal rAAV.sFLT-1 for wet age-related macular degeneration. EBioMedicine. 2016;14:168–75.

    PubMed  PubMed Central  Google Scholar 

  43. Rakoczy EP, Magno AL, Lai CM, Pierce CM, Degli-Esposti MA, Blumenkranz MS, et al. Three-year follow-up of phase 1 and 2a rAAV.sFLT-1 subretinal gene therapy trials for exudative age related macular degeneration. Am J Ophthalmol. 2019;204:113–23.

    PubMed  Google Scholar 

  44. Pechan P, Rubin H, Lukason M, Ardinger J, DuFresne E, Hauswirth WW, et al. Novel anti-VEGF chimeric molecules delivered by AAV vectors for inhibition of retinal neovascularization. Gene Ther. 2009;16(1):10–6.

    CAS  PubMed  Google Scholar 

  45. Yin L, Greenberg K, Hunter JJ, Dalkara D, Kolstad KD, Masella BD, et al. Intravitreal injection of AAV2 transduces macaque inner retina. Invest Ophthalmol Vis Sci. 2011;52(5):2775–83.

    CAS  PubMed  PubMed Central  Google Scholar 

  46. Maclachlan TK, Lukason M, Collins M, Munger R, Isenberger E, Rogers C, et al. Preclinical safety evaluation of AAV2-sFLT01—a gene therapy for age-related macular degeneration. Mol Ther. 2011;19(2):326–34.

    CAS  PubMed  Google Scholar 

  47. Singerman L. Combination therapy using the small interfering RNA bevasiranib. Retina. 2009;29(6 Suppl):S49–50.

    PubMed  Google Scholar 

  48. Shen J, Samul R, Silva RL, Akiyama H, Liu H, Saishin Y, et al. Suppression of ocular neovascularization with siRNA targeting VEGF receptor 1. Gene Ther. 2006;13(3):225–34.

    CAS  PubMed  Google Scholar 

  49. Krzystolik MG, Afshari MA, Adamis AP, Gaudreault J, Gragoudas ES, Michaud NA, et al. Prevention of experimental choroidal neovascularization with intravitreal anti-vascular endothelial growth factor antibody fragment. Arch Ophthalmol. 2002;120(3):338–46.

    CAS  PubMed  Google Scholar 

  50. Kleinman ME, Yamada K, Takeda A, Chandrasekaran V, Nozaki M, Baffi JZ, et al. Sequence- and target-independent angiogenesis suppression by siRNA via TLR3. Nature. 2008;452(7187):591–7.

    CAS  PubMed  PubMed Central  Google Scholar 

  51. Sabers CJ, Martin MM, Brunn GJ, Williams JM, Dumont FJ, Wiederrecht G, et al. Isolation of a protein target of the FKBP12-rapamycin complex in mammalian cells. J Biol Chem. 1995;270(2):815–22.

    CAS  PubMed  Google Scholar 

  52. Corradetti MN, Inoki K, Guan KL. The stress-inducted proteins RTP801 and RTP801L are negative regulators of the mammalian target of rapamycin pathway. J Biol Chem. 2005;280(11):9769–72.

    CAS  PubMed  Google Scholar 

  53. Dumont FJ, Su Q. Mechanism of action of the immunosuppressant rapamycin. Life Sci. 1996;58(5):373–95.

    CAS  PubMed  Google Scholar 

  54. Nguyen QD, Schachar RA, Nduaka CI, Sperling M, Klamerus KJ, Chi-Burris K, et al. Evaluation of the siRNA PF-04523655 versus ranibizumab for the treatment of neovascular age-related macular degeneration (MONET Study). Ophthalmology. 2012;119(9):1867–73.

    PubMed  Google Scholar 

  55. Igarashi T, Miyake K, Kato K, Watanabe A, Ishizaki M, Ohara K, et al. Lentivirus-mediated expression of angiostatin efficiently inhibits neovascularization in a murine proliferative retinopathy model. Gene Ther. 2003;10(3):219–26.

    CAS  PubMed  Google Scholar 

  56. Lai LJ, Xiao X, Wu JH. Inhibition of corneal neovascularization with endostatin delivered by adeno-associated viral (AAV) vector in a mouse corneal injury model. J Biomed Sci. 2007;14(3):313–22.

    CAS  PubMed  Google Scholar 

  57. Binley K, Widdowson PS, Kelleher M, de Belin J, Loader J, Ferrige G, et al. Safety and biodistribution of an equine infectious anemia virus-based gene therapy, RetinoStat((R)), for age-related macular degeneration. Hum Gene Ther. 2012;23(9):980–91.

    CAS  PubMed  Google Scholar 

  58. Balaggan KS, Binley K, Esapa M, Iqball S, Askham Z, Kan O, et al. Stable and efficient intraocular gene transfer using pseudotyped EIAV lentiviral vectors. J Gene Med. 2006;8(3):275–85.

    CAS  PubMed  Google Scholar 

  59. Scappaticci FA, Smith R, Pathak A, Schloss D, Lum B, Cao Y, et al. Combination angiostatin and endostatin gene transfer induces synergistic antiangiogenic activity in vitro and antitumor efficacy in leukemia and solid tumors in mice. Mol Ther. 2001;3(2):186–96.

    CAS  PubMed  Google Scholar 

  60. Yokoyama Y, Dhanabal M, Griffioen AW, Sukhatme VP, Ramakrishnan S. Synergy between angiostatin and endostatin: inhibition of ovarian cancer growth. Cancer Res. 2000;60(8):2190–6.

    CAS  PubMed  Google Scholar 

  61. Campochiaro PA, Lauer AK, Sohn EH, Mir TA, Naylor S, Anderton MC, et al. Lentiviral vector gene transfer of endostatin/angiostatin for macular degeneration (GEM) study. Hum Gene Ther. 2017;28(1):99–111.

    CAS  PubMed  PubMed Central  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joo Yong Lee .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Lee, J.Y., Yeo, J.H. (2020). Gene Therapy for Choroidal Neovascularization. In: Chhablani, J. (eds) Choroidal Neovascularization. Springer, Singapore. https://doi.org/10.1007/978-981-15-2213-0_28

Download citation

  • DOI: https://doi.org/10.1007/978-981-15-2213-0_28

  • Published:

  • Publisher Name: Springer, Singapore

  • Print ISBN: 978-981-15-2212-3

  • Online ISBN: 978-981-15-2213-0

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics