Skip to main content

Biochar: A Sustainable Product for Remediation of Contaminated Soils

  • Chapter
  • First Online:
Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II

Abstract

Combustion of biological residue under less condition of oxygen resulting in less density carbon material is biochar. As thermal decomposition of biomass under limited oxygen condition is responsible for producing biochar, this method is getting attention in soil remediation and waste disposal in recent years. On the advantages of biochar, interest increases nowadays and it may discover multidisciplinary field in science and engineering. Biochar has large area of surface and has greater capacity to absorb heavy metals from contaminated soil. It can be used to reduce the availability of heavy metals and organic pollutants in soil through adsorption as well as other physicochemical reactions. Basically, biochar is an alkaline material which can increase the pH of soil and responsible for heavy metal stabilization. Phytoremediation and biochar are two sound environmental technologies which could be at the forefront to mitigate soil pollution. For remediation of polluted soil, biochar applications may provide new solution for contaminated soil problems. The provided biochar application may include sequestration of carbon, improvement fertility of soil, remediation, and recycling of agricultural waste. For controlling its properties, the key parameters include pyrolysis temperature, time of residence, heat transfer rate, and feedstock type. This article will provide an overview of the biochar impact on the environment and movement of heavy metals in polluted soil as well as methods for remediation of contaminated soil through biochar. Also, in this review, a succinct overview of current biochar use as a sorbent for contaminant management in soil will be summarized and discussed.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 189.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 249.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 249.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Abbreviations

Ca2+:

Calcium

CEC:

Cation exchange capacity

Cu2+:

Copper

GHG:

Greenhouse gases

IBI:

International biochar initiative

Mg2+:

Magnesium

NH4+:

Ammonium

Pb2+:

Lead

PLB:

Poultry liter biochar

References

  • Ahmad S, Ghafoor A, Akhtar ME, Khan MZ (2013) Ionic displacement and reclamation of saline-sodic soils using chemical amendments and crop rotation. Land Degrad Dev 10(24):170–178

    Article  Google Scholar 

  • Ahmad R, Ali S, Rizwan M, Dawood M, Farid M, Hussain A, Wijaya L, Alyemeni MN, Ahmad P, (2019) Hydrogen sulfide alleviates chromium stress on cauliflower by restricting its uptake and enhancing antioxidative system. Physiol Plant

    Google Scholar 

  • Al Agely A, Sylvia DM, Ma LQ (2005) Mycorrhizae increase arsenic uptake by the hyperaccumulator Chinese brake fern (Pteris vittata L.). J Environ Qual 6:2181–2186

    Article  Google Scholar 

  • Ali H, Khan E, Sajad MA (2013) Phytoremediation of heavy metals—concepts and applications. Chemosphere 91:869–881

    Google Scholar 

  • Anon (2018). https://www.researchgate.net/publication/281493453_Chapter_2-Biochar_An_Overview_on_its_Production_Properties_and_Potential_Benefits. Accessed 17 Nov 2018

  • Beesley L, Moreno-Jiménez E, Gomez-Eyles J, Harris E, Robinson B, Sizmur T (2011) A review of biochars’ potential role in the remediation, revegetation and restoration of contaminated soils. Environ Pollut 159(12):3269–3282

    Article  CAS  Google Scholar 

  • Bird MI, Wurster CM, de Paula Silva PH, Bass AM, De Nys R (2011) Algal biochar–production and properties. Bioresour Technol 102(2):1886–1891

    Article  CAS  Google Scholar 

  • Brown RB, Campo AA, Boateng M, Garcia-Perez OM (2015) Fundamentals of biochar production. In: Lehman J, Joseph S (eds) Biochar for environmental management: science, technology and implementation, 2nd edn. Routledge, New York, pp 39–61

    Google Scholar 

  • Bruun S, Jensen ES, Jensen LS (2008) Microbial mineralization and assimilation of black carbon: dependency on degree of thermal alteration. Org Geochem 39(7):839–845

    Article  CAS  Google Scholar 

  • Cantrell KB, Hunt PG, Uchimiya M, Novak JM, Ro KS (2012) Impact of pyrolysis temperature and manure source on physicochemical characteristics of biochar. Bioresour Technol 107:419–428

    Article  CAS  Google Scholar 

  • Cao X, Ma L, Liang Y, Gao B, Harris W (2011) Simultaneous immobilization of lead and atrazine in contaminated soils using dairy-manure biochar. Environ Sci Technol 45(11):4884–4889

    Article  CAS  Google Scholar 

  • Chan KY, Xu Z (2009) Biochar: nutrient properties and their enhancement. In: Biochar for environmental management: science and technology, vol 1. Earthscan, London, pp 67–84

    Google Scholar 

  • de Abreu CA, Coscione AR, Pires AM, Paz-Ferreiro J (2012) Phytoremediation of a soil contaminated by heavy metals and boron using castor oil plants and organic matter amendments. J Geochem Explor 123:3–7

    Article  Google Scholar 

  • Downie A, Crosky A, Munroe P (2009) Physical properties of biochar. In: Biochar for environmental management: science and technology. Earthscan, London, pp 13–32

    Google Scholar 

  • Elad Y, Cytryn E, Meller Harel Y, Lew B, Graber ER (2011) The biochar effect: plant resistance to biotic stresses. Phytopathol Mediterr 50:335–349

    Google Scholar 

  • Farid M, Ali S, Ishaque W, Shakoor MB, Niazi NK, Bibi I, Dawood M, Gill RA, Abbas F (2015) Exogenous application of ethylenediamminetetraacetic acid enhanced phytoremediation of cadmium by Brassica napus L. Int J Environ Sci Technol 12(12):3981–3992

    Article  CAS  Google Scholar 

  • Farid M, Ali S, Rizwan M, Ali Q, Abbas F, Bukhari SAH, Saeed R, Wu L (2017a) Citric acid assisted phytoextraction of chromium by sunflower; morphophysiological and biochemical alterations in plants. Ecotoxicol Environ Saf 145:90–102

    Article  CAS  Google Scholar 

  • Farid M, Ali S, Rizwan M, Saeed R, Tauqeer HM, Sallah-Ud-Din R, Azam A, Raza N (2017b) Microwave irradiation and citric acid assisted seed germination and phytoextraction of nickel (Ni) by Brassica napus L.: morpho-physiological and biochemical alterations under Ni stress. Environ Sci Pollut Res 24(26):21050–21064

    Article  CAS  Google Scholar 

  • Farid SA, Zubair M, Saeed R, Rizwan M, Sallah-Ud-Din R, Azam A, Ashraf R, Ashraf W (2018a) Glutamic acid assisted phyto-management of silvercontaminated soils through sunflower; physiological and biochemical response. Environ Sci Pollut Res 25(25):25390–25400

    Article  CAS  Google Scholar 

  • Farid M, Ali S, Rizwan M, Ali Q, Saeed R, Nasir T, Abbasi GH, Rehmani MIA, Ata-Ul-Karim ST, Bukhari SAH, Ahmad T (2018b) Phyto-management of chromium contaminated soils through sunflower under exogenously applied 5-aminolevulinic acid. Ecotoxicol Environ Saf 151:255–265

    Article  CAS  Google Scholar 

  • Farid M, Ali S, Saeed R, Rizwan M, Bukhari SAH, Abbasi GH, Hussain A, Ali B, Zamir MSI, Ahmad I (2019) Combined application of citric acid and 5-aminolevulinic acid improved biomass, photosynthesis and gas exchange attributes of sunflower (L.) grown on chromium contaminated soil. Int J Phytoremediation 21(8):760–767

    Google Scholar 

  • Farid M, Ali S, Rizwan M, Yasmeen T, Arif MS, Riaz M, Saqib M, Ziaur Rehman M, Ayub MA (2020) Combined effects of citric acid and 5-aminolevulinic acid in mitigating chromium toxicity in sunflower (Helianthus annuus l.) grown in cr spiked soil. Pak J Agri Sci. (Accepted: online)

    Google Scholar 

  • Glaser B, Lehmann J, Zech W (2002) Ameliorating physical and chemical properties of highly weathered soils in the tropics with charcoal - a review. Biol Fertil Soils 35(4):219–230

    Article  CAS  Google Scholar 

  • Graber ER, Meller-Harel Y, Kolton M, Cytryn E, Silber A, Rav David D, Tsechansky L et al (2010) Biochar impact on development and productivity of pepper and tomato grown in fertigated soilless media. Plant and Soil 337(1–2):481–496

    Article  CAS  Google Scholar 

  • Habiba U, Ali S, Farid M, Shakoor MB, Rizwan M, Ibrahim M, Abbasi GH, Hayat T, Ali B (2015) EDTA enhanced plant growth, antioxidant defense system, and phytoextraction of copper by Brassica napus L. Environ Sci Pollut Res 22(2):1534–1544

    Article  CAS  Google Scholar 

  • Hartley W, Dickinson NM, Riby P, Lepp NW (2009) Arsenic mobility in brownfield soils amended with green waste compost or biochar and planted with Miscanthus. Environ Pollut 157:2654–2662

    Article  CAS  Google Scholar 

  • Herath HMSK, Camps-Arbestain M, Hedley M (2013) Effect of biochar on soil physical properties in two contrasting soils: an Alfisol and an Andisol. Geoderma 209-210:188–197

    Article  CAS  Google Scholar 

  • Houben D, Evrard L, Sonnet P (2013a) Mobility, bioavailability and pH-dependent leaching of cadmium, zinc and lead in a contaminated soil amended with biochar. Chemosphere 92:1450–1457

    Article  CAS  Google Scholar 

  • Houben D, Evrard L, Sonnet P (2013b) Beneficial effects of biochar application to contaminated soils on the bioavailability of Cd, Pb and Zn and the biomass production of rapeseed (Brassica napus L.). Biom Bioenergy 57:196–204

    Article  CAS  Google Scholar 

  • IBI (2015) https://biochar-international.org/wp-content/uploads/2019/01/IBI_Biochar_Standards_V2.1_Final1.pdf. Retrieved 18 Jan 2020

    Google Scholar 

  • Jabeen N, Abbas Z, Iqbal M, Rizwan M, Jabbar A, Farid M, Ali S, Ibrahim M, Abbas F (2015) Glycinebetaine mediates chromium tolerance in mung bean through lowering of Cr uptake and improved antioxidant system. Arch Agron Soil Sci 62(5):648–662

    Article  Google Scholar 

  • Jeffery S, Verheijen FGA, van der Velde M, Bastos AC (2011) A quantitative review of the effects of biochar application to soils on crop productivity using meta-analysis. Agric Ecosyst Environ 144(1):175–187

    Article  Google Scholar 

  • Joseph S, Amonette JE (2012) Characteristics of biochar: microchemical properties. In: Biochar for environmental management. Routledge, Abingdon, pp 65–84

    Google Scholar 

  • Karhu K, Mattila T, Bergström I, Regina K (2011) Biochar addition to agricultural soil increased CH4 uptake and water holding capacity—results from a short-term pilot field study. Agric Ecosyst Environ 140(1–2):309–313. https://doi.org/10.1016/j.agee.2010.12.005

    Article  CAS  Google Scholar 

  • Komárek M, VanÄ›k A, Ettler V (2013) Chemical stabilization of metals and arsenic in contaminated soils using oxides – a review. Environ Pollut 172:9–22

    Article  Google Scholar 

  • Kuzyakov Y, Subbotina I, Chen H, Bogomolova I, Xu X (2009) Black carbon decomposition and incorporation into soil microbial biomass estimated by 14C labeling. Soil Biol Biochem 41(2):210–219

    Article  CAS  Google Scholar 

  • Lehmann J, Czimczik C, Laird D, Sohi S (2009) Stability of biochar in the soil. In: Biochar for environmental management. J Sci Technol

    Google Scholar 

  • Lima IM, Boateng AA, Klasson KT (2014) Physicochemical and adsorptive properties of fast-pyrolysis bio-chars and their steam activated counter parts. J Chem Technol Biotechnol:n/an/a

    Google Scholar 

  • Liu X, Zhang A, Ji C, Joseph S, Bian R, Li L, Pan G, Paz-Ferreiro J (2013) Biochar’s effect on crop productivity and the dependence on experimental conditions—a meta-analysis of literature data. Plant Soil 373(1–2):583–594

    Article  CAS  Google Scholar 

  • Mukherjee A, Zimmerman A (2013) Organic carbon and nutrient release from a range of laboratory-produced biochars and biochar–soil mixtures. Geoderma 193-194:122–130. https://doi.org/10.1016/j.geoderma.2012.10.002

    Article  CAS  Google Scholar 

  • Nguyen BT, Lehmann J, Kinyangi J, Smernik R, Riha SJ, Engelhard MH (2009) Long-term black carbon dynamics in cultivated soil. Biogeochemistry 92(1–2):163–176

    Article  Google Scholar 

  • Nigussie A, Kissi E, Misganaw M, Ambaw G (2012) Effect of biochar application on soil properties and nutrient uptake of lettuces (Lactuca sativa) grown in chromium polluted soils. Am Eurasian J Agric Environ Sci 12(3):369–376

    CAS  Google Scholar 

  • Novak JM, Ippolito JA, Ducey TF, Watts DW, Spokas KA, Trippe KM, Sigua GC, Johnson MG (2018) Remediation of an acidic mine spoil: miscanthus biochar and lime amendment affects metal availability, plant growth, and soil enzyme activity. Chemosphere 205:709–718

    Article  CAS  Google Scholar 

  • Paz-Ferreiro J, Shenglei F, Méndez A, Gascó G (2014) Interactive effects of biochar and the earthworm Pontoscolex corethrurus on plant productivity and soil enzyme activities. J Soils Sediments 14(3):483–494

    Article  CAS  Google Scholar 

  • Qin G, Gong D, Fan M-Y (2013) Bioremediation of petroleum-contaminated soil by biostimulation amended with biochar. Int Biodeterior Biodegradation 85:150–155

    Article  CAS  Google Scholar 

  • Rizwan M, Ali S, Hussain A, Ali Q, Shakoor MB, Zia-ur-Rehman M, Farid M, Asma M (2017) Effect of zinc-lysine on growth, yield and cadmium uptake in wheat (Triticum aestivum L.) and health risk assessment. Chemosphere 187:35–42

    Article  CAS  Google Scholar 

  • Sallah-Ud-Din R, Farid M, Saeed R, Ali S, Rizwan M, Tauqeer HM, Bukhari SAH (2017) Citric acid enhanced the antioxidant defense system and chromium uptake by Lemna minor L. grown in hydroponics under Cr stress. Environ Sci Pollut Res 24(21):17669–17678

    Google Scholar 

  • Sarwar N, Imran M, Shaheen MR, Ishaque W, Kamran MA, Matloob A et al (2017) Phytoremediation strategies for soils contaminated with heavy metals: modifications and future perspectives. Chemosphere 171:710–721

    Article  CAS  Google Scholar 

  • Seiler W, Crutzen P (1980) Estimates of gross and net fluxes of carbon between the biosphere and the atmosphere from biomass burning. Clim Chang 2(3):207–247. https://doi.org/10.1007/bf00137988

    Article  CAS  Google Scholar 

  • Tang J, Zhu W, Kookana R, Katayama A (2013) Characteristics of biochar and its application in remediation of contaminated soil. J Biosci Bioeng 116(6):653–659

    Article  CAS  Google Scholar 

  • UNEP (2018) What is phytoremediation?. http://www.unep.or.jp/ietc/publications/freshwater/fms2/1.asp. Accessed 24 Nov 2018

  • Uzoma K, Inoue M, Andry H, Fujimaki H, Zahoor A, Nishihara E (2011) Effect of cow manure biochar on maize productivity under sandy soil condition. Soil Use Manag 27(2):205–212. https://doi.org/10.1111/j.1475-2743.2011.00340.x

    Article  Google Scholar 

  • Xin J, Liu X, Liu W, Zheng X (2014) Effects of biochar–BDE-47 interactions on BDE-47 bioaccessibility and biodegradation by Pseudomonas putida TZ-1. Ecotoxicol Environ Saf 106:27–32

    Article  CAS  Google Scholar 

  • Zimmerman AR (2010) Abiotic and microbial oxidation of laboratory-produced black carbon (Biochar). Environ Sci Technol 44(4):1295–1301

    Article  CAS  Google Scholar 

  • Zhang M, Gao B, Varnoosfaderani S, Hebard A, Yao Y, Inyang M (2013) Preparation and characterization of a novel magnetic biochar for arsenic removal. Bioresour Technol 130:457–462. https://doi.org/10.1016/j.biortech.2012.11.132

    Article  CAS  PubMed  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2020 Springer Nature Singapore Pte Ltd.

About this chapter

Check for updates. Verify currency and authenticity via CrossMark

Cite this chapter

Sajjad, A. et al. (2020). Biochar: A Sustainable Product for Remediation of Contaminated Soils. In: Hasanuzzaman, M. (eds) Plant Ecophysiology and Adaptation under Climate Change: Mechanisms and Perspectives II. Springer, Singapore. https://doi.org/10.1007/978-981-15-2172-0_30

Download citation

Publish with us

Policies and ethics